Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit

**R.I. Knight** 

March 2014

**Report to Forestry Tasmania** 

natural resource planning

#### Suggested citation:

Knight, R.I. (2014). Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit. A report to Forestry Tasmania, March 2014. Natural Resource Planning, Hobart, Tasmania.

Produced by: Natural Resource Planning Pty Ltd ACN: 130 109 250 PO Box 4530 Bathurst Street Hobart, TASMANIA, 7000. Australia. www.naturalresourceplanning.com.au

© Natural Resource Planning Pty Ltd

This work is protected under Australian copyright law. The report may be freely circulated, cited or reproduced only in accordance with the provisions of applicable copyright law.

Commercial use of the contents and format of this report and the intellectual property herein is prohibited except as provided for by the service contract between Natural Resource Planning and Forestry Tasmania. Potential users should contact the company for further information.

*Disclaimer:* Whilst due and reasonable care has been taken in the preparation of this report and the data described herein, NRP does not warrant that it is free of errors or omissions and does not accept responsibility for any cost or inconvenience arising from its use. Use and interpretation of the data is a matter for Forestry Tasmania.



| 1  | 1. Introduction                                                                    |
|----|------------------------------------------------------------------------------------|
| 3  | 2. Background to the Regional Ecosystem Model                                      |
| 5  | 2.1 Strategy review                                                                |
| 8  | 2.2 REM structure and specifications development                                   |
| 12 | 2.3 REM spatial architecture                                                       |
| 15 | 2.4 REM data sources                                                               |
| 16 | 2.5 REM construction                                                               |
| 16 | 2.6 Generation of REM indicators                                                   |
| 17 | 2.7 REM spatial data consolidation                                                 |
| 18 | 2.8 Additional HCV indicators                                                      |
| 19 | 3. REM indicator specifications for the Forest Management Unit                     |
| 19 | 3.1 Landscape ecological function                                                  |
| 19 | 3.1.1 Biophysical naturalness                                                      |
| 22 | 3.1.2 Riparian vegetation                                                          |
| 23 | 3.1.3 Remnant vegetation                                                           |
| 24 | 3.1.4 Connectivity                                                                 |
| 26 | 3.1.5 Clearing bias                                                                |
| 28 | 3.1.6 Integrated index for landscape ecological function                           |
| 31 | 3.2 Biological significance                                                        |
| 31 | 3.2.1 Priority species                                                             |
| 31 | 3.2.1.1 Hollow dwelling species habitat                                            |
| 33 | 3.2.1.2 Other (non-threatened) priority species                                    |
| 34 | 3.2.1.3 Threatened species                                                         |
| 37 | 3.2.1.4 Integrated level of concern for priority species                           |
| 37 | 3.2.2 REM Vegetation conservation status                                           |
| 43 | 3.2.3 Integrated index for biological significance                                 |
| 44 | 3.3 Biodiversity management priority                                               |
| 46 | 4. High conservation value indicator specifications for the forest management unit |
| 46 | 4.1 Priority species indicators                                                    |
| 46 | 4.1.1 Number of endemic priority species                                           |
| 47 | 4.1.2 Species reservation index                                                    |
| 47 | 4.1.2.1 Number of poorly reserved non-listed priority flora species                |
| 48 | 4.1.2.2 Number of poorly reserved threatened fauna species                         |
| 49 | 4.1.2.3 Number of poorly reserved threatened flora species                         |
| 49 | 4.1.2.4 Integrated species reservation index                                       |
| 50 | 4.1.3 Threatened species concentration index                                       |
| 55 | 4.1.3.1 Den and nest sites of Landscape Dependent Fauna                            |
| 55 | 4.1.3.2 Number of threatened Landscape Dependent Fauna                             |

| 56         | <i>4.1.3.3</i> Number of threatened species that are not Landscape Dependent Fauna                   |
|------------|------------------------------------------------------------------------------------------------------|
| 56         | 4.1.3.4 Number of Endangered or Critically Endangered species that are not Landscape Dependent Fauna |
| 57         | 4.1.3.5 Number of Rare or Vulnerable species that are not Landscape Dependent Fauna                  |
| 57         | 4.1.3.6 Number of species with Critically Limited Locations                                          |
| 58         | 4.1.3.7 Number of raptor species nest territories                                                    |
| 58         | 4.1.3.8 Integrated threatened species concentration index                                            |
| 59         | 4.1.4 Species depletion index                                                                        |
| 60         | 4.2 Old growth forest indicators                                                                     |
| 60         | 4.2.1 Conservation status of old growth forests                                                      |
| 61         | 4.2.2 Type 2 old growth forest of Rare or Depleted type 1 old growth                                 |
| 61         | 4.2.3 Type 1 old growth reservation index                                                            |
| 62         | 4.2.4 Type 2 old growth reservation index                                                            |
| 63         | 4.3 Ecosystem indicators                                                                             |
| 63         | 4.3.1 Rainforest index                                                                               |
| 64         | 4.3.2 Ecosystem depletion index                                                                      |
| 66         | 4.3.3 Ecosystem reservation index                                                                    |
| 68         | 4.3.4 Remnant vegetation index                                                                       |
| ATTACHMENT | S                                                                                                    |
| 1          | Example issue summary from REM strategy review                                                       |
| 2          | Example of REM specifications development process                                                    |
| 3          | Data sources used in construction of the REM                                                         |
| 4          | Summary of scripts controlling REM construction                                                      |
| 5          | Metadata for the dissolved REM polygon layer                                                         |
| 6          | Species habitat modelling rules and indicator attributes                                             |
| 7          | Modelling rules for species attributed from species-specific habitat parameters                      |
| 8          | Vegetation classification of the REM and HCV indicators                                              |
| 9          | Vegetation communities 'fuzzy' bioregional boundaries and logical consistency rules                  |
| 10         | Conservation and reservation status of old growth forests                                            |
| 11         | Conservation and reservation status of vegetation communities                                        |

# 1. INTRODUCTION

Forestry Tasmania (FT) is seeking Forest Stewardship Council (FSC) certification of land it manages in Tasmania. FT contracted Natural Resource Planning Pty Ltd (NRP) to prepare a Regional Ecosystem Model (REM) and other biodiversity data and indicators as part of a range of inputs to assessment of High Conservation Value (HCV) forests within its area.

The FSC system provides for certification of Forest Management for eligible areas and designation of Controlled Wood status in areas ineligible for Forest Management certification. Ineligible areas generally are plantations that have been created from areas of native forests converted to plantations since 1994. Eligible areas are those that are under the direct management control of the entity seeking certification.

The FSC requires that both Forest Management and Controlled Wood are assessed in a designated Forest Management Unit (FMU). The FMU for which the data described in this report is contained within the Permanent Timber Production Zone (PTPZ) land is land managed by Forestry Tasmania under the *Tasmanian Forests Agreement Act 2013*.

This report describes biodiversity data, models and indicators developed by NRP as an input to FT for use in the FSC assessment. Two categories of data are described:

- Standard data products from NRP's Regional Ecosystem Model process; and
- A range of additional data and indicators identified by FT as inputs for the assessment of HCVs.

The REM is a comprehensive system for the spatial integration and analysis of biodiversity data. It was originally developed for use in rural property management but has since been widely used for forest management, particularly in relation to FSC requirements, in local government planning, by private landowners and by NRM bodies. The process of identifying the issues to be incorporated in the REM is described in Knight and Cullen  $(2009^1)$ . The development of the technical specifications for the REM is described in Knight and Cullen  $(2010^2)$ . It should be noted that some amendments to the specifications have been made since the initial publication, and are detailed herein.

The REM is relevant to only a subset of the FSC HCVs. The REM does not of itself identify HCVs. However, it provides a comprehensive, systematic and transparent database on a wide range of biodiversity attributes, and can be used to assist in the identification of values, thresholds and areas of HCV forests.

<sup>&</sup>lt;sup>1</sup> Knight, R.I. & Cullen, P.J. (2009). A review of strategies for planning & management of the natural resources of biodiversity, freshwater, land & soils in the Tasmanian midlands. A report of the Caring for Our Country project 'Using landscape ecology to prioritise property management actions in Tasmania'. Natural Resource Planning, Hobart, Tasmania.

http://www.naturalresourceplanning.com.au/assets/LandscapeEcology\_StratReview\_v1-1lr.pdf

<sup>&</sup>lt;sup>2</sup> Knight, R.I. & Cullen, P.J. (2010). Specifications for a Regional Ecosystem Model of natural resources in the Tasmanian Midlands. A report of the Caring for Our Country Project 'Using landscape ecology to prioritise property management actions in Tasmania'. Natural Resource Planning, Hobart, Tasmania. http://www.naturalresourceplanning.com.au/assets/REM\_specifications\_v1-0.pdf

To assist in determining appropriate thresholds and delineation of HCV areas, a number of additional indicators were identified by FT as needing to be developed for this version of the REM. These indicators provide further interpretation of the base REM results to address specific HCVs. These values are defined generally under the FSC system and specifically in the FSC Australia (2013<sup>3</sup>) evaluation framework for HCVs. The indicators described herein are primarily relevant to HCVs 1 (significant concentrations of biodiversity values) and 3 (threatened ecosystems).

This report describes the development of the REM for the FMU. It identifies:

- The conceptual structure of the REM;
- The spatial architecture on which the REM is constructed;
- Data inputs for generating the REM; and
- Rule sets and specifications for deriving REM indicators, both standard and as developed specifically for FT.

http://www.fscaustralia.org/sites/default/files/Australia%20HCV%20Framework%20Final%203-4.pdf

<sup>&</sup>lt;sup>3</sup> FSC Australia (2013). High Conservation Values (HCVs) evaluation framework for use in the context of implementing FSC certification to the FSC Principles and Criteria & Controlled Wood standards. Version 3.4, March 2013, FSC Australia, Melbourne.

# 2. BACKGROUND TO THE REGIONAL ECOSYSTEM MODEL

The REM is a comprehensive system for:

- Integrating spatial data on the distribution of the major components of biodiversity, and the factors affecting them;
- Analysing the relationships among the components of biodiversity and the environment; and
- Spatially identifying areas which have immediate or potential conservation concerns, and providing indicators of their relative importance, to inform approaches and priorities for management.

The REM was originally developed with funding from the Australian Government's Caring for Our Country program. The initial aim in developing the REM was for it to assist in prioritising property management actions in the Tasmanian Midlands, with a view to delivering effective management of terrestrial biodiversity, freshwater aquatic ecosystems and land and soil resources.

The Australian Government has continued its investment in projects that are using the REM to deliver biodiversity outcomes. At the time of writing four projects comprising total funding of ~\$1.3M have or are being undertaken. These projects have used the REM for a range of purposes, including property management planning and prioritisation, identifying priority areas for management intervention to secure important biodiversity values, and revegetation and rehabilitation works designed to secure and improve the ecological functioning of the landscape.

The REM involves a comprehensive and systematic approach to planning for biodiversity management, and so has also been used for a range of purposes beyond its original intent. These include in local government planning, with various aspects of the REM developed for Clarence, Kingborough and Huon Valley Councils, and also for forestry companies involved in FSC certification of their management (e.g. Gunns, Norske-Skog and PF Olsen).

There are eight major processes involved in development and maintenance of the REM. Each of these processes needs to be undertaken in a structured and logically consistent manner in order to produce meaningful and useful outputs capable of supporting responsible biodiversity management. Table 1 provides a summary of each of the major processes of the REM.

More detailed specifications for the REM, including decision rules and prioritisation matrices, are presented in Section 3.

| Table 1. M  | laior processes | of the Regional | Ecosystem Model |
|-------------|-----------------|-----------------|-----------------|
| 10010 1. 10 | lajor processes | of the negional | Leosystem model |

| RFM process              | Brief description                                                                                                     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1. Strategy review       | Systematic review of major strategy documents setting scope of                                                        |
| 1 0.0000, 0000           | biodiversity priorities.                                                                                              |
|                          | Summaries of major scientific themes associated with each Issue.                                                      |
|                          | Outputs: Classification into biodiversity 'Issues'.                                                                   |
|                          |                                                                                                                       |
| 2. REM specifications    | Inherits list of Issues from strategy review.                                                                         |
|                          | Issues reviewed for confounding, logical consistency and data                                                         |
|                          | availability.                                                                                                         |
|                          | Prioritisation schemae for each Issue.                                                                                |
|                          | Integration schemae for biodiversity hierarchy.                                                                       |
|                          |                                                                                                                       |
| 3. Standardised spatial  | Statewide coverages of hexagons at 0.25 ha and 0.1 ha scales.                                                         |
| architecture             | Centroids of hexagons (i.e. points) used as the spatial unit for REM data                                             |
|                          | storage and analysis.                                                                                                 |
|                          |                                                                                                                       |
| 4a. Standard data inputs | Systematic Statewide data covering:                                                                                   |
|                          | <ul> <li>Vegetation primary (e.g. vegetation community) and derived</li> <li>(e.g. patch cize) attributes;</li> </ul> |
|                          | (e.g. patch size) attributes,                                                                                         |
|                          | <ul> <li>Old growth torests;</li> <li>Evaluate transformed dominances</li> </ul>                                      |
|                          | Eucarypt structural dominance;                                                                                        |
|                          | Biophysical naturalness;                                                                                              |
|                          | <ul> <li>Hydrologic leatures;</li> <li>Bradiated mature babitat availability.</li> </ul>                              |
|                          | Predicted mature nabital availability;     CEEV vivor section setebments:                                             |
|                          | CFEV river section catchinents,                                                                                       |
|                          | Land system components mapping; and     Alter threatened and priority species location                                |
|                          | <ul> <li>Natural values Atlas threatened and phonty species location<br/>records</li> </ul>                           |
| 4b. Custom data inputs   | Additional data of higher reliability than standard inputs, where                                                     |
| •                        | available, for example:                                                                                               |
|                          | <ul> <li>Field based mapping of vegetation, old growth, eucalypt</li> </ul>                                           |
|                          | structure and biophysical naturalness;                                                                                |
|                          | <ul> <li>PI type mapping of vegetation attributes;</li> </ul>                                                         |
|                          | <ul> <li>Species habitat and location polygons;</li> </ul>                                                            |
|                          | Field mapping of watercourse locations.                                                                               |
|                          |                                                                                                                       |
| 5. REM construction      | Standard rules for generating coverage of area of interest, plus                                                      |
|                          | adjoining related areas.                                                                                              |
|                          | Derived attributes generated from inputs using data hierarchy                                                         |
|                          | Derived attributes generated from inputs using data merarchy.                                                         |
| 6. Generate REM          | GIS scripts to generate standard REM indicators and custom REM                                                        |
| indicators               | indicators for project.                                                                                               |
|                          |                                                                                                                       |

| REM process                   | Brief description                                                                                                                                                 |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Spatial data consolidation | Reattribution of REM coverage as polygons (hexagons).<br>Dissolve of reattributed hexagons to produce specific outputs or<br>simplified REM coverage as polygons. |
| 8. Additional HCV indicators  | Additional indicators developed specifically for the FT project, as detailed in section 4.                                                                        |

## 2.1 Strategy review

The foundation of the REM is a systematic review of the major 'strategy documents' guiding natural resource management in Tasmania<sup>4</sup>. The purpose of the strategy review was to provide a systematic classification of Natural Resource Management (NRM) Assets and Issues for use as input to development of the Regional Ecosystem Model. The strategy review was undertaken to address biodiversity, freshwater ecosystems and land and soils; however for the current purpose only biodiversity is discussed.

Strategy documents selected for the review were defined broadly to include policy frameworks, NRM Strategies, Government and non-Government programs, legislation and international agreements. The review addressed 11 strategy documents whose purpose included overarching principles for biodiversity and a number of other documents addressing one or a few issues only.

Each Issue identified from within the reviewed strategy documents was presented as:

- A concise statement of the scope of the Issue;
- A brief discussion of key scientific findings and issues;
- A cross-tabulation of the Issue against indicating the strategy documents which address the Issue; and
- A summary of the main features of the strategy documents identified.

Attachment 1 provides an example of an Issue summary from the strategy review.

Table 2 shows the list of Issues identified in the strategy review and the strategy documents from which they were identified.

<sup>&</sup>lt;sup>4</sup> Knight & Cullen (2009) op. cit.

|                                   | Overarching Documents <sup>6</sup> |     |          |     |     |      |                                                                                                                                                                                    |
|-----------------------------------|------------------------------------|-----|----------|-----|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Issues                            | Nat.                               | DEW | FPC      | NRM | NRM | Tas. | Other Documents                                                                                                                                                                    |
|                                   | Cons.                              |     |          | Nth | Sth | Tog. |                                                                                                                                                                                    |
| Asset: Native Vegetation          | <b>pn</b>                          | e   | <u>.</u> |     |     |      |                                                                                                                                                                                    |
| Clearing Bias                     | Y                                  |     |          | Y   |     | Y    | • Permanent Forest<br>Estate Policy                                                                                                                                                |
| Connectivity                      |                                    |     | Y        | Y   | Y   |      | • National Biodiversity<br>Strategy                                                                                                                                                |
| Vegetation<br>Conservation Status | Y                                  | Y   |          | Y   | Y   | Y    | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Salinity<br/>Strategy</li> <li>Permanent Forest<br/>Estate Policy</li> <li>Regional Forest<br/>Agreement</li> </ul> |
| Grazing Impacts                   |                                    |     |          |     |     |      | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Strategy</li> </ul>                                                                          |
| Invasive Species                  | Y                                  | Y   | Y        | Y   | Y   | Y    | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Strategy</li> <li>Tasmanian Weed<br/>Management Strategy</li> </ul>                          |
| Old Growth Forest                 | Y                                  |     | Y        |     |     | Y    | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Regional Forest<br/>Agreement</li> </ul>                                                                                      |
| Pathogens                         | Y                                  |     | Y        | Y   |     | Y    | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Strategy</li> </ul>                                                                          |
| Remnant Vegetation                | Y                                  |     | Y        | Y   |     |      | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Salinity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Strategy</li> </ul>                                 |
| Representativeness                |                                    |     |          |     |     |      | • National Biodiversity<br>Strategy                                                                                                                                                |

Table 2. Assets and Issues in the Biodiversity Asset Class, from REM strategy review<sup>5</sup>

<sup>&</sup>lt;sup>5</sup> From Knight & Cullen (2009) op. cit., pp13-14.

<sup>&</sup>lt;sup>6</sup> Nat. Cons. – DPIW Nature Conservation Strategy, DEW – National NRM assets and indicators; FPC – Forest Practices Code; NRM North – NRM North strategy; NRM South – NRM South strategy; Tas. Tog. – Tasmania Together revised benchmarks.

|                            | Overarching Documents <sup>6</sup> |     |            |     |     |      |                                                                                                                                                                                                          |
|----------------------------|------------------------------------|-----|------------|-----|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Issues                     | Nat.                               | DEW | FPC        | NRM | NRM | Tas. | Other Documents                                                                                                                                                                                          |
|                            | Cons.                              |     |            | Nth | Sth | Tog. |                                                                                                                                                                                                          |
| Reservation Status         | Y                                  |     | Y          | Y   | Y   | Y    | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Regional Forest<br/>Agreement</li> </ul>                                                                                                            |
| Riparian Vegetation        | Y                                  |     | Y          |     |     |      | National Biodiversity     Strategy                                                                                                                                                                       |
| Tree Decline               |                                    |     |            | Y   | Y   |      | • Tasmanian Salinity<br>Strategy                                                                                                                                                                         |
| Vegetation Condition       |                                    | Y   |            | Y   | Y   |      | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Salinity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Strategy</li> </ul>                                                       |
| Wilderness                 |                                    |     |            |     |     |      | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Regional Forest<br/>Agreement</li> </ul>                                                                                                            |
| Asset: Priority species    |                                    | -   | . <u>.</u> |     |     |      |                                                                                                                                                                                                          |
| Threatened Species         | Y                                  | Y   | Y          | Y   | Y   | Y    | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Salinity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Strategy</li> <li>Regional Forest<br/>Agreement</li> </ul>                |
| Hollow Dwelling<br>Species | Y                                  |     | Y          |     |     |      | • Regional Forest<br>Agreement                                                                                                                                                                           |
| Other Priority Species     |                                    |     | Y          |     |     |      | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Salinity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Protection<br/>Strategy</li> <li>Regional Forest<br/>Agreement</li> </ul> |
| High Species<br>Diversity  |                                    |     | Y          |     |     |      | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Regional Forest<br/>Agreement</li> </ul>                                                                                                            |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## 2.2 **REM structure and specifications development**

The purposes of the REM specifications process are:

- to organise the list of Issues inherited from the strategy review into a logically consistent structure which can be used for generating regional scale models of biodiversity; and
- to derive indicators of relative priorities for consideration of the management needs of each Issue within the model and for groups of Issues forming discrete themes within the model.

The REM specifications were initially developed as part of the original Caring for Our Country project<sup>7</sup> but have been subject to continuing review and modification to reflect better scientific understanding of Issues within the model and perspectives on biodiversity that have arisen as a result of the expansion in geographic coverage, availability of new data, and increased resolution of both the spatial application of the model and its underlying taxonomy.

The REM specifications process follows a standardised format designed to ensure consistency and transparency. Each Issue from the strategy review has been assessed to identify:

- a concise statement of the scope of each Issue;
- issues of logical consistency, relationship to other Issues and confounding;
- whether the Issue would be incorporated explicitly in the REM, or be identified as an Ancillary Issue that may be relevant in particular circumstances;
- relevant indicators and measures for each Issue;
- core assumptions relating to the interpretation of each Issue;
- the availability of spatial data to provide geographic presentation of each Issue;
- data processing methods required to generate spatial representation of each Issue; and
- prioritisation matrices used to assign Level of Concern classes.

Attachment 2 provides an example of the specifications development process, for the same Issue provided as an exemplar from the strategy review.

An important part of the specifications development process is the assignment of Level of Concern classes. Level of Concern uses the same classification as the Conservation Management Priority (CMP) system used in the CFEV project (DPIPW, 2008<sup>8</sup>), with classes ranging from Low through Medium, High and Very High. However, Level of Concern in the REM is considered to be a flag for management needs to be considered, rather than a management priority of itself.

<sup>&</sup>lt;sup>7</sup> See Knight and Cullen (2010) *op. cit.* 

<sup>&</sup>lt;sup>8</sup> Department of Primary Industries & Water (2008). Conservation of Freshwater Ecosystems Values (CFEV) project technical report. CFEV program, Department of Primary Industries & Water, Hobart. http://www.dpiw.tas.gov.au/inter.nsf/WebPages/CGRM-7JHVSJ?open

Level of Concern also uses the concept of two different management perspectives that were incorporated into CFEV:

- Immediate an estimate of the relative priority for immediate management action to address current risk to the natural resource; and
- Potential an estimate of the relative priority to protect and manage the natural resource from risks which may arise in the future.

A further principle that was applied during the REM specifications process is that thresholds should, wherever possible, be based on precedent uses of the same thresholds. For example, the size thresholds for remnant vegetation provided in Attachment 2 match the classes used in the Comprehensive Regional Assessment for the Regional Forest Agreement<sup>9</sup>. Similarly the classes for different percentages of native riparian vegetation within river section catchments match those used for the CFEV project. In cases where no precedent thresholds could be identified, available data was assessed and classes assigned.

The REM specifications development process resulted in 14 of the Issues from the strategy review being organised into a hierarchical structure with two key facets:

- Biological Significance the biological attributes of an area that define its relative significance from a conservation science perspective; and
- Landscape Ecological Function the principal attributes of the landscape that determine its ability to sustain the elements of biodiversity it contains,

Figure 1 shows the conceptual structure of the REM.

Each of the 14 Issues which form the inputs to the REM have associated spatial data sources, rule sets and prioritisation matrices. The matrices combine in a hierarchical fashion so that successively 'higher' levels in the REM can be assessed for integrated Level of Concern indicators of their constituent Issues. Figure 2 shows the prioritisation matrices for each level of the REM. The integration matrix for landscape function is relatively complex and is presented in section 3.1.1.6.

Section 3 contains a detailed description of the data inputs, data hierarchy, prioritisation matrices and specifications of the standard REM developed for this project.

<sup>&</sup>lt;sup>9</sup> Tasmanian Public Land Use Commission (1997). Tasmania-Commonwealth Regional Forest Agreement background report part H: National Estate report. February 1997, Tasmanian Public Land Use Commission, Hobart.



*Figure 1. Conceptual structure of the Regional Ecosystem Model* 

Figure 2. Tasmanian Regional Ecosystem Model Indicators, Content & Prioritisation Matrices



Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| nction Index |    |  |  |  |
|--------------|----|--|--|--|
| Μ            | L  |  |  |  |
| VH           | VH |  |  |  |
| Н            | Н  |  |  |  |
| М            | М  |  |  |  |
| М            | L  |  |  |  |



| Component<br>Cleared<br>(%) | Concern –<br>Immediate | Concern –<br>Potential |
|-----------------------------|------------------------|------------------------|
| Cleared                     |                        |                        |
| >90%                        | VH                     | L                      |
| 70-90%                      | Н                      | L                      |
| 30-70%                      | М                      | L                      |
| <30%                        | L                      | L                      |
| Native veg.                 |                        |                        |
| >90%                        | VH                     | VH                     |
| 70-90%                      | Н                      | Н                      |
| 30-70%                      | М                      | Μ                      |
| <30%                        | L                      | L                      |

| , | Distance of:   | Concern –<br>Immediate | Concern –<br>Potential |
|---|----------------|------------------------|------------------------|
|   | Cleared land   |                        |                        |
|   | to native veg. |                        |                        |
|   | <50m           | L                      | L                      |
|   | 50-250m        | М                      | L                      |
|   | 250-1,000m     | Н                      | L                      |
|   | >1,000m        | VH                     | L                      |
|   | Native         |                        |                        |
|   | remnant to     |                        |                        |
|   | non-remnant    |                        |                        |
|   | <50m           | L                      | VH                     |
|   | 50-250m        | М                      | Н                      |
|   | 250-1,000m     | Н                      | Μ                      |
|   | >1,000m        | VH                     | L                      |
|   | Non-remnant    |                        |                        |
|   | Any            | L                      | L                      |

| Biophysical<br>turalness category | Concern –<br>Immediate | Concern –<br>Potential |
|-----------------------------------|------------------------|------------------------|
| 5 (highest)                       | L                      | VH                     |
| 4                                 | L                      | VH                     |
| 3                                 | М                      | Н                      |
| 2                                 | Н                      | М                      |
| 1 (lowest)                        | VH                     | М                      |
| 0 (non-native)                    | L                      | L                      |
| (water, sand, mud)                | na                     | na                     |

| River section<br>chment or wetland<br>urian vegetation (%) | Concern –<br>Immediate | Concern –<br>Potential |
|------------------------------------------------------------|------------------------|------------------------|
| <1                                                         | VH                     | L                      |
| 1-20%                                                      | Н                      | VH                     |
| 20-80%                                                     | М                      | Н                      |
| >80%                                                       | L                      | М                      |

## 2.3 **REM spatial architecture**

The REM integrates large volumes of data from a large number of data sources and a range of different data formats. Parts of the REM process also generate additional data that is created within the REM rather than being sourced from among the inputs. These factors have necessitated development of a spatial architecture for the REM that is capable of meeting complex geoprocessing requirements in an efficient and reliable manner, while also producing outputs that have a spatial accuracy which is useful in planning and management.

The REM architecture is based on overlaying the area of interest with a cell-based GIS layer whose format is interchangeable between vector polygons and points using the ESRI shapefile format. The main elements of the REM architecture and its use are:

- 1. The base polygon layer for developing the REM for any area is a Statewide coverage of offset hexagons of 0.1 ha. Due to the large number of polygons involved (~68 million), these are stored as tiles which are edge-matched to have no gaps or overlaps.
- 2. The centroids of the REM hexagons are stored as a matching set of tiles of vector point Shapefiles and share the same unique Statewide identifier as their parent hexagons. These points are effectively a lattice that 'samples' the entire State approximately every 33 metres.
- 3. Subsets of the REM point Shapefiles are selected that cover the area for which a REM coverage is to be generated. This can be a single layer or, where the area is large, a set of tiles that are processed separately to achieve efficiency in processing times. The optimal size for tiles is generally less than 1.2 million points, beyond which processing times increase exponentially. In the current case the area was large and geographically dispersed, so 15 tiles were generated and processed separately.
- 4. The REM is attributed by a series of GIS scripts which populate the point layers with data from the various inputs, and from various combinations of inputs and processes applied within the REM to derive attributes (e.g. species models, various distance-based functions). This is achieved through use of spatial joins, table joins and spatial selections. The method does not involve any geoprocessing, so no slivers, gaps or overlaps are produced. The spatial geometry of vector points is also the simplest it can get, so speed of processing is maximised.
- 5. As the first stage of converting the REM back to a polygon format, the primary data fields within the REM layer are concatenated to a single field. The standard REM format requires approximately 130 data fields to build the full set of attributes and indicators. The majority of fields within the REM are derived from a smaller number of primary inputs, so each combination of primary data can be used as a 'key' to the full REM which is accessed via lookup tables.
- 6. The parent hexagons of each REM point are attributed with the concatenated field of primary data, via the unique identifier which is shared between the hexagons and the points.
- 7. The hexagons are then dissolved on the value of the concatenated field. This creates polygons based on each combination of the primary data, resulting in an 'atomic' structure in which each polygon is internally homogeneous but differs

from each of its neighbours on at least one primary data attribute. Polygons with this characteristic are referred to as Atomic Planning Units (APUs).

- 8. The full set of REM fields is attached to the dissolved hexagon layer by means of a table join on the concatenated field. This enables the dissolved hexagon layer to be fully attributed with all the REM fields, both primary and derived.
- 9. The dissolved hexagons layer is then further reduced in size by first imposing a spatial hierarchy of the most accurate or critical of the primary data, then dissolving polygons below a threshold size which share the elements of the hierarchy. In the current case, the vegetation community and riparian zones were considered to be the most accurate components of the model, with the model also considered sensitive to reconfiguration of riparian zones due to their small size. The final REM hexagons layer was therefore produced dissolving all polygons of 0.1 ha (the minimum size) into neighbours which were identical on both their vegetation community and riparian zone attributes (minor rules apply where multiple options are available).

Figure 3 provides a graphical summary of how the spatial architecture is applied.



*Figure 3. Simplified REM spatial architecture and process* 

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## 2.4 **REM data sources**

The REM uses data from a wide variety of sources to construct its database of primary biodiversity attributes, to derive secondary attributes from the primary inputs, and to generate the REM indicators. The REM uses a standardised set of data sources in its construction, based on them being sources which are readily and continuously available for use.

A number of the standard data sources for the REM are generated from desktop studies, or from combinations of field survey and desktop study. As a result there is variation in their accuracy and reliability.

Logical consistency is a key issue in the REM. Data come from a wide range of sources and can have spatial boundaries which are not coincident with data from other sources on related issues. This gives rise to the possibility of producing derived attributed which are inconsistent with the input data, including 'absurd' possibilities.

All data used within the REM is subject to a strict data hierarchy that ensures logical consistency. The highest level in the hierarchy is the classification of vegetation, primarily from Tasveg. For example, where an input on the presence of old growth forest occurs partly in areas mapped as cleared land, water or non-forest vegetation, the old growth attribute is not assigned in order to maintain logical consistency.

The REM also makes use of definitive fields for some attributes. Definitive fields are REM fields that are derived from multiple inputs to arrive at a determined value for a field using logical rules. For example, the definitive value for biophysical naturalness is a function of a data hierarchy integrating RFA naturalness, field mapped naturalness and FT disturbance class data, along with logical rules relating to the type of vegetation.

A further core principle of the REM is continual improvement in data quality. In practice this means each project for which the REM is constructed includes a review of additional data sources that either may be available outside the standard sources, or may need to be generated (e.g. through field survey).

For the REM described here there were large quantities of spatial data developed and maintained by FT which were identified as able to offer substantial enhancement to the content of the REM, and also improvement in the accuracy and reliability of its inputs, and hence its outputs. The REM was modified to incorporate these data where appropriate.

Attachment 3 provides details of the spatial data sources that were used to generate the REM. Each data source is described by name, content, components of the REM in which it is used, and data custodian. Additional notes are also included where appropriate. Detail on the way in which each of the data sources is used is presented in sections 3 and 4.

## 2.5 **REM construction**

The REM is constructed on a shapefile of points, generated as the centroids of hexagons of 0.1 ha area. The spatial extent of the area covered by the REM is always larger than the area of interest. This arises through the need of the REM to recalculate the percentage of native riparian vegetation in each CFEV river section catchment that intersects the area of interest.

In the current case, the area for which the REM was initially generated was the assessment area defined by FT, plus the additional area of any river section catchments intersecting it. The area for which the REM data was developed was 1.134 M ha, of which a subset forms the FT FMU.

The initial base layer of the REM consists of only the points, a unique ID to enable linking to the parent points tile, and a unique ID for the REM tile to be generated. As noted above, the REM is broken down into tiles (n = 15) to keep data processing manageable.

Construction of the REM is controlled by a sequence of GIS scripts. A number of the scripts build on the outputs of earlier scripts in the sequence, so changes to REM rules controlled by lower order scripts generally necessitate rerunning higher order scripts that are affected by the changes.

Attachment 4 provides a summary of each of the scripts in the REM process. The REM for the FMU involved developing a number of custom scripts for indicators to use in HCV identification and thresholding. These are also identified in Attachment 4.

## 2.6 Generation of REM indicators

Generation of REM indicators is via two GIS scripts which are run after the REM has been constructed and populated with data. The first script generates the standard REM indicators for the Issues identified in Figure 1. The second script generates both data and indicators that were identified for use in the process of identifying and thresholding HCVs.

The GIS indicators are generated through various combinations of lookup tables, spatial selection, and derivation from inputs already contained within the REM. Attachment 4 identifies the REM issues and HCV indicators that were generated. Section 3 provides a detailed breakdown of rule sets, data hierarchies and processing, and lookup tables for the REM indicators. Section 4 provides the same information for the additional HCV indicators identified by FT.

## 2.7 REM spatial data consolidation

The GIS tiles used to generate the REM are too large to be easily managed as a single GIS layer, and by virtue of being fragmented into tiles can be difficult to manipulate for reporting or analysis. These issues arise largely due to the size of the attribute table and the large number of fields needed to contain the REM data.

Within this large number of fields, however, is a smaller subset of 'primary' data on which the rest of the database is built. This subset of fields was used to consolidate the point-based REM tiles into a single polygon layer. The consolidation was performed by concatenating the values of the primary fields into a single field containing a delimiter to separate the primary inputs. The following fields were used as the basis for the consolidation:

- Definitive (Section 2.4) vegetation community field;
- IBRA bioregional code assigned to the input vegetation polygon;
- Predicted mature eucalypt habitat class;
- Definitive field for vegetation structural type;
- Definitive field for biophysical naturalness;
- Concatenated list of threatened species codes;
- Concatenated list of other priority species codes;
- Clearing bias of the desktop land system component;
- Clearing bias of the automated land system component;
- CFEV river section catchment identifier;
- REM riparian zone attribution (yes/no);
- Contiguous extent of native vegetation;
- Distance class (1-4) of remnant vegetation to non-remnant vegetation; and
- Distance class (1-4) of connectivity through cleared land.

Using the definitive field values for vegetation community, structural type and biophysical naturalness substantially reduces the REM database table size, but also results in the inputs to the definitive fields being lost from the consolidated version. These data are, however, preserved in the original point tiles and can be accessed as needed.

The concatenated field generated through this process was attributed to the parent hexagon of each REM point using a table join on the unique ID of the point, which is identical to that of the parent polygon. The hexagons are then dissolved on the value of the concatenated field to produce a polygon layer with a reduced number of records. Data from the point layer of each REM tile is then added to the consolidated layer by means of a table join, and all remaining fields, excluding the inputs to the definitive fields and data stored for information only (e.g. local government area), added permanently to the layer.

The final stage of the consolidation process is to dissolve small polygons (0.1ha threshold was used) into their most similar neighbours. To achieve this a field combining both the vegetation community code and the riparian zone attribute (yes/no) was added. Polygons of the 0.1 ha threshold size were then dissolved into the neighbour with the longest adjacent border which also had the same combination of vegetation community and riparian zone attribute. Where this condition was not met the polygon was retained at its original size.

Attachment 5 contains metadata for the dissolved spatial layer of the REM.

## 2.8 Additional HCV indicators

Use of the REM for assessing HCV forests required further processing of the standard REM data. This was undertaken through a process of:

- Identifying HCV criteria which REM data are relevant (current HCV 1 and 3);
- Identifying indicators to inform assessment of aspects of the HCV criteria;
- Developing rule sets to reflect the range of variation within indicators; and
- Spatially attributing the indicators into both the point and consolidated polygon versions of the REM.

Section 4 provides details on the HCV indicators that were developed and the data processing methods used to generate them.

# 3. REM INDICATOR SPECIFICATIONS FOR THE FOREST MANAGEMENT UNIT

The REM is constructed through a relatively complex set of data inputs, rule sets and lookup tables. This set collectively forms the REM specifications, which are enforced using logical consistency rules and data control procedures during the REM generation process.

The sections which follow present each of the REM Issues in terms of:

- Definition;
- Data inputs;
- Data hierarchy;
- Lookup tables; and
- Prioritisation matrices used to assign REM indicators.

The specifications for the standard REM inputs are presented 'bottom up', i.e. Issues which are lower in the REM structural model (Figure 1) are described first, followed by any integrated indicators which are derived from them. The summaries do not address the rational for inclusion of an Issue in the REM or the research which addresses it. These can be found in the REM strategy review document<sup>10</sup>.

The specifications for each of the additional indicators generated for the HCV assessment are described in Section 4.

## 3.1 Landscape Ecological Function

## 3.1.1 Biophysical naturalness

*Attribute:* Biophysical naturalness classes matched to the rules and classes used in the RFA biophysical naturalness mapping.

| Data inputs & hierarchy           | Definitive | Attribute classes                         |
|-----------------------------------|------------|-------------------------------------------|
|                                   | field      |                                           |
| 1. Field-mapped BN                | LF_BN_useZ | -1. Not native vegetation (cleared land   |
|                                   |            | types, water, rock sand, mud)             |
| 2. BN derived from FT             |            | 0. Cleared land types (Tasveg 'F' codes). |
| Distrubance13.shp                 |            | 1 (lowest) to 5 (highest).                |
| 3. BN derived using logical rules |            |                                           |
| where not above                   |            |                                           |

<sup>&</sup>lt;sup>10</sup> Knight and Cullen (2009). op. cit.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

*Data processing:* Biophysical naturalness from field-mapped sources was considered definitive. Remaining biophysical naturalness was derived by combining FT's updated disturbance classes with vegetation data and RFA BN classes from the Atomic Planning Units data layer (see Attachment 3). Table 3 shows the rule set for updating biophysical naturalness from the various inputs.

| Biophysical naturalness class | Concern – Immediate | Concern – Potential |
|-------------------------------|---------------------|---------------------|
| 5 (highest)                   | L                   | VH                  |
| 4                             | L                   | VH                  |
| 3                             | М                   | Н                   |
| 2                             | Н                   | М                   |
| 1 (lowest)                    | VH                  | М                   |
| 0 (non-native)                | L                   | L                   |
| -1 (water, sand, mud)         | na (L)              | na (L)              |

Level of Concern matrix:

| Table 3. | Updated biophysical naturalness classes from APUs (RFA-based) and native eucalypt disturbance (PI-based <sup>1</sup> | <sup>1</sup> ) |
|----------|----------------------------------------------------------------------------------------------------------------------|----------------|
|          | Note: Schema does not apply where BN has been mapped from field-sources                                              |                |

| RFA/APU BN class (where not field mapped):                                                                                                                                                                                                                                            | 5<br>(highest,<br>native) | 4  | 3  | 2  | 1<br>(lowest,<br>native) | 0<br>(cleared<br>types) | -1<br>(water, rock,<br>sand, mud) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----|----|----|--------------------------|-------------------------|-----------------------------------|
| Native eucalypt forest disturbance classes (FT data)                                                                                                                                                                                                                                  |                           |    |    |    |                          |                         |                                   |
| 0 = No recorded disturbance. Stand contains no aged regeneration elements (of any species), nor plantation, nor any thinned, fire damaged, or cutover condition code                                                                                                                  | 5                         | 4  | 3  | 2  | 1                        | 0                       | -1                                |
| 1 = Some evidence of past disturbance. Non aged non-eucalypt regeneration, or has a condition code of thinned, fire damaged, or cutover.                                                                                                                                              | 4                         | 4  | 3  | 2  | 1                        | 0                       | -1                                |
| 2 = Moderately disturbed once. Original eucalypt stand elements dominate a single regeneration class (eg following partial logging). Stand contains only one aged regeneration element, which is either the second or third-listed significant element.                               | 3                         | 3  | 3  | 2  | 1                        | 0                       | -1                                |
| 3 = Moderately disturbed several times. Original eucalypt stand elements dominate two or more regeneration classes (eg following multiple partial loggings). Stand contains more than one aged regeneration element, of which the first is either the second or third-listed element. | 2                         | 2  | 2  | 2  | 1                        | 0                       | -1                                |
| 4 = Heavily disturbed. Few remnants of original stand (eg clearfelled, habitat or seed-trees, shelterwood removed, or severe fire). Stand contains one or more aged regeneration elements, of which one is first-listed before other significant eucalypt elements.                   | 2                         | 1  | 1  | 1  | 1                        | 0                       | -1                                |
| 5 = Very heavily disturbed. No remnants of original stand (eg clearfelled or severe fire). Stand is either totally unstocked (following logging), or contains one or more aged regeneration element and no other significant eucalypt elements.                                       | 1                         | 1  | 1  | 1  | 1                        | 0                       | -1                                |
| 6 = Has ceased to be native forest. Converted to plantations, pasture etc.<br>(Note: This rule is controlled by vegetation mapping where not logically consistent).                                                                                                                   | 0                         | 0  | 0  | 0  | 0                        | 0                       | -1                                |
| Other                                                                                                                                                                                                                                                                                 |                           |    |    |    |                          |                         |                                   |
| Other native vegetation.                                                                                                                                                                                                                                                              | 5                         | 4  | 3  | 2  | 1                        | 0                       | -1                                |
| Plantations, cleared land types.                                                                                                                                                                                                                                                      | 0                         | 0  | 0  | 0  | 0                        | 0                       | -1                                |
| Water, rock, sand, mud.                                                                                                                                                                                                                                                               | -1                        | -1 | -1 | -1 | -1                       | -1                      | -1                                |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

 $<sup>^{11}</sup>$  PI = photo-interpretation. For a description see Stone, M.G. (1998). Forest-type mapping by photo-interpretation: A multi-purpose base for Tasmania's forest management. Tasforests, 10:15-32.

## 3.1.2 Riparian vegetation

*Attribute:* The percentage of the local catchment of each of river section and wetland which is under native riparian vegetation, stratified into bands as described for the CFEV project (Department of Primary Industries and Water 2008<sup>12</sup>). The indicator applies equally to both the cleared and native vegetation components of the catchment.

| Data inputs                 | Data hierarchy                        | Definitive fields         | Attribute classes                                                       |
|-----------------------------|---------------------------------------|---------------------------|-------------------------------------------------------------------------|
| CFEV River                  | 1. Recalculated                       | LF_R_rzonZ                | Continuous data from 0.00 to 1.00, -                                    |
| Section                     | native riparian                       | (Y/N) determination       | 9.99 where not applicable (e.g.                                         |
| Catchment Id                | vegetation                            | of riparian zone)         | waterbodies).                                                           |
|                             | percentage for RSC                    |                           |                                                                         |
| Vegetation<br>type (native, | 2. CFEV native<br>riparian vegetation | LF_R_RVpcZ<br>(Definitive | CFEV native riparian vegetation is<br>only used where a small number of |
| other)                      | percentage for RSC                    | percentage of RSC         | REM points (<= 5) occurs in a River                                     |
|                             |                                       | native riparian           | Section Catchment; otherwise the                                        |
|                             |                                       | vegetation)               | recalculated value is used.                                             |
| Riparian zone definition    |                                       |                           |                                                                         |
| LIST hydarea                |                                       |                           |                                                                         |
| data                        |                                       |                           |                                                                         |
| FT watercourse              |                                       |                           |                                                                         |
| data                        |                                       |                           |                                                                         |

## Data processing:

Riparian zones within the REM are defined as follows:

1. REM points within 35m of lineal watercourses.

Lineal watercourses are those represented by lines rather than polygons and stored in the layer FT-REM\_wcourse\_use.shp.

2. REM points within 35m and including wetlands.

Wetlands are defined as:

- Polygons in the LIST Hydarea layer identified as wetlands;
- Polygons in Tasveg identified as saltmarsh and wetlands ("A" codes) and also some swamp forests (codes NLM and NME).

3. REM points within 35m of watercourse polygons in the LIST Hydarea layer that are not tagged as Class 1 streams.

4. REM points within 50m of estuaries, waterbodies and watercourse polygons named as "xxxx River"). Estuaries and waterbodies are defined as polygons within the LIST Hydarea layer identified as estuaries, waterbodies or watercourses. Points within the polygons are not attributed as riparian, except as a result of rule 2 above.

<sup>&</sup>lt;sup>12</sup> Department of Primary Industries & Water (2008). Conservation of Freshwater Ecosystems Values (CFEV) project technical report. CFEV program, Department of Primary Industries & Water, Hobart.

Percentage of native riparian vegetation in each CFEV river section catchment is recalculated from the input data by script 3a (see Attachment 3).

| River section catchment or wetland riparian vegetation (%) | Concern –<br>Immediate | Concern –<br>Potential |
|------------------------------------------------------------|------------------------|------------------------|
| <1                                                         | VH                     | L                      |
| 1-20%                                                      | Н                      | VH                     |
| 20-80%                                                     | М                      | Н                      |
| >80%                                                       | L                      | М                      |

#### Level of Concern matrix

Notes:

Level of Concern percentage bands match those used for classification in CFEV.

## 3.1.3 Remnant vegetation

*Attribute:* The contiguous extent of each patch of native vegetation communities, stratified into size classes. A size threshold of 200ha for remnants is used.

| Data inputs                                             | Data<br>hierarchy | Definitive<br>fields | Attribute classes                                                                                                                                                                                                                                     |
|---------------------------------------------------------|-------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vegetation type attribute (field<br>[Vegcom_tyZ] = "N") | None.             | LF_M_HaZ             | Continuous data on the contiguous extent of native vegetation.                                                                                                                                                                                        |
|                                                         |                   | LF_M_clZ             | <ul> <li>Size class for vegetation patch size:</li> <li>1. Not native vegetation.</li> <li>2. Remnant 0-2 ha.</li> <li>3. Remnant 2-20 ha.</li> <li>4. Remnant 20-200ha.</li> <li>5. Non-remnant, contiguous native vegetation &gt;200 ha.</li> </ul> |

## Data processing:

Data is recalculated when each new version of the APU data is created, which assigns a unique ID to each patch of native vegetation (n = 31,663) and calculates the contiguous area (0.01 ha – 3,257,270 ha). A threshold for contiguity of 10 m is used. Native vegetation is defined as Tasveg communities which are not agricultural, urban, exotic or 'other' natural environments (water, rock, sand, mud) and are not tagged in the APU data as 'Induced'. Induced vegetation is that considered likely to have been so modified that its current structure does not match its natural form. Categorisation applies generically to Lowland Grassland Complex (GCL) and Queenstown Regrowth (SQR). Attribution can be set manually for field mapped situations within these and selected other communities (e.g. native grasslands considered induced through loss of tree cover).

Level of Concern matrix:

| Native vegetation patch size (ha) | Concern – Immediate | Concern – Potential |
|-----------------------------------|---------------------|---------------------|
| <2 ha                             | М                   | L                   |
| 2-20 ha                           | VH                  | VH                  |
| 20-200 ha                         | Н                   | VH                  |
| >200 ha                           | L                   | М                   |

Notes:

The ranges of patch size classes within the indicator reflect first the range of 2-200 ha for remnants nominated by Kirkpatrick and Gilfedder (1995<sup>13</sup>). Patches >2 ha were considered generally to retain much more conservation value than smaller patches. Remnants <2ha were considered to be of little importance to landscape function, while >200 ha are subject to the processes which affect remnants at a significantly diminished intensity and effect. The split in the middle size class in the indicator is based on the RFA assessment of remnant vegetation, which considered patches <20 ha, though potentially locally important, as below the threshold for importance in maintaining existing processes or natural systems at the regional scale (Tasmanian Public Land Use Commission 1997<sup>14</sup>).

#### 3.1.4 Connectivity

*Attribute:* For remnant vegetation patches, the distance to the nearest non-remnant patch. For cleared land, the distance to the nearest patch of native vegetation.

| Data inputs                                                         | Data      | Definitive | Attribute classes                                                                    |
|---------------------------------------------------------------------|-----------|------------|--------------------------------------------------------------------------------------|
|                                                                     | hierarchy | fields     |                                                                                      |
| Vegetation type attribute (field<br>[Vegcom_tyZ] = "N", "C" or "I") | None.     | LF_C_lustZ | Lookup string for<br>connectivity attributes.<br>See data processing for<br>details. |
| Contiguous native vegetation patch size (field [LF_M_haZ]).         |           |            |                                                                                      |

#### Data processing:

Data on the distance of remnant vegetation patches to non-remnants is generated when each new version of the Atomic Planning Units data is built. Connectivity of cleared land is generated by a script within the REM that uses spatial selection to sequentially assign cleared land with a class for distance to native vegetation. Both remnant and cleared land

<sup>&</sup>lt;sup>13</sup> Kirkpatrick, J.B. & Gilfedder, L. (1995). Maintaining integrity compared with maintaining rare and threatened taxa in remnant Bushland in subhumid Tasmania. Biological Conservation, 74(1):1-8..

<sup>&</sup>lt;sup>14</sup> Tasmanian Public Land Use Commission (1997). Tasmania-Commonwealth Regional Forest Agreement background report part H: National Estate report. February 1997, Tasmanian Public Land Use Commission, Hobart.

connectivity use a set of banded classes defined by an increasing increment as distance increases:

- 0-50m (5m increment);
- 50-100m (10m increment)
- 100-200m (20m increment);
- 200-500m (50m increment);
- 500-1,000m (100m increment);
- 1,000-2,000m (200m increment);
- 2,000-5,000m (500m increment); and
- >5,000m (1,000m increment).

The distances above are then placed into four classes and matched with the vegetation type to form the lookup string for determining Level of Concern.

| Connectivity class | Description                                          |
|--------------------|------------------------------------------------------|
| C1                 | Cleared land <50m from native vegetation             |
| C2                 | Cleared land 50-250m from native vegetation          |
| C3                 | Cleared land 250-500m from native vegetation         |
| C4                 | Cleared land >1000m from native vegetation           |
| 11                 | Induced vegetation <50m from native vegetation       |
| 12                 | Induced vegetation 50-250m from native vegetation    |
| 13                 | Induced vegetation 250-500m from native vegetation   |
| 14                 | Induced vegetation >1000m from native vegetation     |
| N1                 | Remnant <50m from non-remnant                        |
| N2                 | Remnant 50-250m from non-remnant                     |
| N3                 | Remnant 250-1000m from non-remnant                   |
| N4                 | Remnant >1000m from non-remnant                      |
| N5                 | Non-remnant patch of native vegetation, i.e. >200 ha |
| ZZ                 | Water or Other (see [Vegcom_tyZ])                    |

| Connectivity class | Level of Concern – Immediate | Level of Concern - Potential |
|--------------------|------------------------------|------------------------------|
| C1                 | L                            | L                            |
| C2                 | L                            | М                            |
| C3                 | L                            | Н                            |
| C4                 | L                            | VH                           |
| N1                 | VH                           | L                            |
| N2                 | Н                            | М                            |
| N3                 | М                            | Н                            |
| N4                 | L                            | VH                           |
| ZZ                 | L                            | L                            |
| N5                 | L                            | L                            |
| 11                 | L                            | L                            |
| 12                 | Μ                            | М                            |
| 13                 | Н                            | Н                            |
| 14                 | VH                           | VH                           |

#### Level of Concern matrix:

## 3.1.5 Clearing bias

*Attribute:* The percentage of each land component that has been cleared, stratified spatially into areas now cleared or with extant native vegetation. Clearing bias measures the degree of bias towards clearing of particular types of land. High clearing bias in these types can result in proportionally greater impacts on biodiversity than in the landscape as a whole.

| Data inputs                                                                                                                      | Data hierarchy                                                                                             | Definitive<br>fields | Attribute                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|
| Vegetation type attribute (field<br>[Vegcom_tyZ] = "N", "C" or "I")                                                              | <ol> <li>Both automated and<br/>field/desktop land<br/>components data available</li> </ol>                | LF_CB_luZ            | Lookup string<br>for clearing bias<br>attributes.<br>See data<br>processing for<br>details. |
| Clearing bias of automated land<br>component, from automated land<br>systems component data                                      | <ol> <li>Field/desktop land<br/>components available, but<br/>not automated land<br/>components</li> </ol> |                      |                                                                                             |
| Clearing bias of described land<br>component, from field and desktop<br>mapped land system components<br>data (partial coverage) | <ol> <li>Automated land<br/>components available, but<br/>not field/desktop land<br/>components</li> </ol> |                      |                                                                                             |

#### Data processing:

The input data layers are attributed with the clearing bias of each land system component. Clearing bias is the percentage of the mapped extent of the land system component which has been cleared of native vegetation (i.e. it does not have the attribute of vegetation type = "N"). Where data from both input sources is available, the clearing bias used is the mean of the inputs; where only one or the other is available then the clearing bias is that of the available data.

The scripting process analyses the vegetation type and clearing bias inputs and assigns them to a class which forms the lookup string for assigning Level of Concern.

| Clearing bias class | Description                                                |
|---------------------|------------------------------------------------------------|
| C3                  | Cleared land on land component 70-90% cleared              |
| C1                  | Cleared land on land component <30% cleared                |
| C2                  | Cleared land on land component 30-70% cleared              |
| C4                  | Cleared land on land component >90% cleared                |
| 11                  | Induced native vegetation on land component 30% cleared    |
| 12                  | Induced native vegetation on land component 30-70% cleared |
| 13                  | Induced native vegetation on land component 70-90% cleared |
| 14                  | Induced native vegetation on land component >90% cleared   |
| N1                  | Native vegetation on land component <30% cleared           |
| N2                  | Native vegetation on land component 30-70% cleared         |
| N3                  | Native vegetation on land component 70-90% cleared         |
| N4                  | Native vegetation on land component >90% cleared           |
| ZZ                  | Water or Other types (see [Vegcom_tyZ]                     |

## Level of Concern matrix:

| Component Cleared (%)   | Level of Concern –<br>Immediate | Level of Concern –<br>Potential |  |
|-------------------------|---------------------------------|---------------------------------|--|
| Cleared land or induced |                                 |                                 |  |
| vegetation              |                                 |                                 |  |
| >90% (C4, I4)           | VH                              | L                               |  |
| 70-90% (C3, I3)         | Н                               | L                               |  |
| 30-70% (C2, I2)         | Μ                               | L                               |  |
| <30% (I2, I1)           | L                               | L                               |  |
|                         |                                 |                                 |  |
| Native veg.             |                                 |                                 |  |
| >90% (N4)               | VH                              | VH                              |  |
| 70-90% (N3)             | Н                               | Н                               |  |
| 30-70% (N2)             | М                               | М                               |  |
| <30% (N1)               | L                               | L                               |  |

## 3.1.6 Integrated index for Landscape Ecological Function

The integrated index for Landscape Ecological Function treats the five component Issues as a set of attributes operating at three scales:

- Landscape scale Clearing bias measures variation in the loss of native vegetation across the landscape, which can create extinction debts and trophic cascades that can affect species composition and survival over large areas;
- Local scale Connectivity, remnant vegetation and riparian vegetation measure variation in the local scale configuration of native vegetation in parts of the landscape, and hence of the ability of species to move through the landscape; and
- Within-patch scale Biophysical naturalness measures variation in the condition characteristics of each area of native vegetation, including variation within continuous areas, which can in turn affect species persistence.

The integrated index for landscape function is generated as a two stage process which reflects the different scales within the index. First, the Level of Concern classes for connectivity, remnant vegetation and riparian vegetation are integrated to produce a subindex at the local scale. The subindex is then combined with the Level of Concern classes for clearing bias (landscape scale) and biophysical naturalness (within-patch scale) issues to derive an overall indicator for landscape ecological function.

Table 4 shows the integrated Level of Concern classes for the local scale Issues, with the overall assessment of landscape ecological function shown in Table 5. The tables also contain ranked orders of each of the combinations of inputs. The ranked orders are intended to facilitate finer scale assessment of attributes and variation if required. It should be noted that although the tables use the same combinations for Level of Concern both Immediate and Potential, the resultant indices change in response to whether the inputs are from the Immediate or Potential perspective.

| Connectivity | Remnant<br>Vegetation | Riparian<br>Vegetation | CRR<br>Index | Rank (1 =<br>highest) | Connectivit |
|--------------|-----------------------|------------------------|--------------|-----------------------|-------------|
| VH           | VH                    | VH                     | VH           | 1                     | М           |
| Н            | VH                    | VH                     | VH           | 2                     | VH          |
| VH           | VH                    | Н                      | VH           | 3                     | Н           |
| VH           | Н                     | VH                     | VH           | 4                     | M           |
| М            | VH                    | VH                     | VH           | 5                     | Н           |
| Н            | VH                    | Н                      | VH           | 6                     | Н           |
| VH           | VH                    | М                      | VH           | 7                     | L           |
| Н            | Н                     | VH                     | VH           | 8                     | L           |
| VH           | Н                     | Н                      | VH           | 9                     | VH          |
| VH           | М                     | VH                     | VH           | 10                    | L           |
| L            | VH                    | VH                     | Н            | 11                    | М           |
| М            | VH                    | Н                      | Н            | 12                    | Н           |
| Н            | VH                    | М                      | Н            | 13                    | М           |
| VH           | VH                    | L                      | Н            | 14                    | Н           |
| М            | Н                     | VH                     | Н            | 15                    | Н           |
| VH           | Н                     | М                      | Н            | 16                    | L           |
| Н            | М                     | VH                     | Н            | 17                    | М           |
| VH           | М                     | Н                      | Н            | 18                    | L           |
| VH           | L                     | VH                     | Н            | 19                    | Н           |
| L            | VH                    | Н                      | Н            | 20                    | М           |
| М            | VH                    | М                      | Н            | 21                    | Н           |
| Н            | VH                    | L                      | Н            | 22                    | L           |
| L            | Н                     | VH                     | Н            | 23                    | L           |
| VH           | Н                     | L                      | Н            | 24                    | Н           |
| М            | М                     | VH                     | Н            | 25                    | М           |
| VH           | М                     | М                      | Н            | 26                    | L           |
| Н            | L                     | VH                     | Н            | 27                    | М           |
| VH           | L                     | Н                      | Н            | 28                    | М           |
| L            | VH                    | М                      | Н            | 29                    | L           |
| М            | VH                    | L                      | Н            | 30                    | L           |
| L            | Μ                     | VH                     | Н            | 31                    | М           |
| VH           | Μ                     | L                      | н            | 32                    | L           |

| Connectivity | Remnant    | Riparian   | CRR   | Rank (1 = |
|--------------|------------|------------|-------|-----------|
|              | Vegetation | Vegetation | Index | highest)  |
| М            | L          | VH         | Н     | 33        |
| VH           | L          | М          | Н     | 34        |
| Н            | Н          | Н          | Н     | 35        |
| М            | Н          | Н          | М     | 36        |
| Н            | Н          | М          | М     | 37        |
| Н            | М          | Н          | М     | 38        |
| L            | VH         | L          | М     | 39        |
| L            | L          | VH         | М     | 40        |
| VH           | L          | L          | М     | 41        |
| L            | Н          | Н          | М     | 42        |
| М            | Н          | М          | М     | 43        |
| Н            | Н          | L          | М     | 44        |
| М            | М          | Н          | М     | 45        |
| Н            | М          | М          | М     | 46        |
| Н            | L          | Н          | М     | 47        |
| L            | Н          | М          | М     | 48        |
| М            | Н          | L          | М     | 49        |
| L            | М          | Н          | М     | 50        |
| Н            | М          | L          | М     | 51        |
| М            | L          | Н          | М     | 52        |
| Н            | L          | М          | М     | 53        |
| L            | Н          | L          | М     | 54        |
| L            | L          | Н          | М     | 55        |
| Н            | L          | L          | М     | 56        |
| М            | М          | М          | L     | 57        |
| L            | М          | М          | L     | 58        |
| М            | М          | L          | L     | 59        |
| М            | L          | М          | L     | 60        |
| L            | М          | L          | L     | 61        |
| L            | L          | М          | L     | 62        |
| М            | L          | L          | L     | 63        |
| L            | L          | L          | L     | 64        |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| Clearing bias | CRR Index | Biophysical<br>naturalness | LEF index | Rank (1 = highest) |
|---------------|-----------|----------------------------|-----------|--------------------|
| VH            | VH        | VH                         | VH        | 1                  |
| VH            | VH        | Н                          | VH        | 2                  |
| VH            | Н         | VH                         | VH        | 3                  |
| VH            | VH        | М                          | VH        | 4                  |
| VH            | Н         | Н                          | VH        | 5                  |
| VH            | VH        | L                          | VH        | 6                  |
| Н             | VH        | VH                         | VH        | 7                  |
| VH            | М         | VH                         | VH        | 8                  |
| VH            | Н         | М                          | VH        | 9                  |
| Н             | VH        | Н                          | VH        | 10                 |
| VH            | М         | Н                          | VH        | 11                 |
| VH            | Н         | L                          | VH        | 12                 |
| Н             | Н         | VH                         | VH        | 13                 |
| Н             | VH        | М                          | VH        | 14                 |
| VH            | L         | VH                         | VH        | 15                 |
| VH            | М         | М                          | VH        | 16                 |
| Н             | Н         | Н                          | H         | 17                 |
| Н             | VH        | L                          | Н         | 18                 |
| М             | VH        | VH                         | Н         | 19                 |
| VH            | L         | Н                          | Н         | 20                 |
| VH            | M         | L                          | Н         | 21                 |
| Н             | М         | VH                         | Н         | 22                 |
| Н             | Н         | М                          | Н         | 23                 |
| М             | VH        | Н                          | Н         | 24                 |
| VH            | L         | М                          | Н         | 25                 |
| Н             | М         | Н                          | Н         | 26                 |
| Н             | Н         | L                          | Н         | 27                 |
| М             | Н         | VH                         | Н         | 28                 |
| М             | VH        | М                          | Н         | 29                 |
| VH            | L         | L                          | М         | 30                 |
| Н             | L         | VH                         | Н         | 31                 |
| Н             | М         | М                          | Н         | 32                 |

| Table 5. | Overall Level of | Concern index | for Landscape | Ecological Function |
|----------|------------------|---------------|---------------|---------------------|
|----------|------------------|---------------|---------------|---------------------|

| Clearing bias | CRR Index | Biophysical<br>naturalness | LEF index | Rank (1 = highest) |
|---------------|-----------|----------------------------|-----------|--------------------|
| М             | Н         | Н                          | М         | 33                 |
| L             | VH        | VH                         | М         | 34                 |
| М             | VH        | L                          | М         | 35                 |
| Н             | L         | Н                          | М         | 36                 |
| Н             | М         | L                          | М         | 37                 |
| М             | М         | VH                         | М         | 38                 |
| М             | Н         | М                          | М         | 39                 |
| L             | VH        | Н                          | М         | 40                 |
| Н             | L         | М                          | М         | 41                 |
| М             | М         | Н                          | М         | 42                 |
| М             | Н         | L                          | М         | 43                 |
| L             | Н         | VH                         | М         | 44                 |
| L             | VH        | М                          | М         | 45                 |
| Н             | L         | L                          | М         | 46                 |
| М             | L         | VH                         | М         | 47                 |
| М             | М         | М                          | М         | 48                 |
| L             | Н         | Н                          | L         | 49                 |
| L             | VH        | L                          | М         | 50                 |
| М             | L         | Н                          | L         | 51                 |
| М             | М         | L                          | М         | 52                 |
| L             | М         | VH                         | L         | 53                 |
| L             | Н         | М                          | L         | 54                 |
| М             | L         | М                          | L         | 55                 |
| L             | М         | Н                          | L         | 56                 |
| L             | Н         | L                          | L         | 57                 |
| М             | L         | L                          | L         | 58                 |
| L             | L         | VH                         | L         | 59                 |
| L             | М         | М                          | L         | 60                 |
| L             | L         | Н                          | L         | 61                 |
| L             | М         | L                          | L         | 62                 |
| L             | L         | М                          | L         | 63                 |
| L             | L         | L                          | L         | 64                 |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.
# 3.2 Biological Significance

### 3.2.1 Priority species

Priority species in the REM are all listed threatened species and other priority species. Other priority species are flora species considered to be poorly reserved (section 3.2.1.2) and two non-listed fauna species - the Eastern Quoll *Dasyurus viverrinus* and Tasmanian Bettong *Bettongia gaimardi* both of which are now extinct on mainland Australia.

### 3.2.1.1 Hollow dwelling species habitat

*Attribute:* Relative dominance of forest vegetation structure by old growth, mature and regrowth elements as an indicator of the likely relative abundance of eucalypt tree hollows and mature forest elements.

| Data inputs                                           | Data hierarchy                                                                    | Definitive<br>fields | Attribute classes                                                                                                                                                                                              |
|-------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definitive field for<br>vegetation<br>community.      | 1. Field mapped old growth                                                        | OG_useZ              | Determination of old growth is a function<br>of eligibility of forest community for old<br>growth form and the availability of either<br>field mapping (preferred in hierarchy) or<br>old growth mapped by FT. |
| Field mapped old<br>growth                            | <ol> <li>Field mapped<br/>eucalypt forest<br/>structural<br/>dominance</li> </ol> | Vstr_useZ            | See data processing                                                                                                                                                                                            |
| Old growth 2013                                       | 3. Old growth 2013                                                                | FPA_holow            | High, Medium, Low, Not suitable.                                                                                                                                                                               |
| FPA predicted<br>mature eucalypt<br>abundance classes | <ol> <li>FPA predicted<br/>mature eucalypt<br/>abundance</li> </ol>               |                      |                                                                                                                                                                                                                |
| 2013 PI-type<br>structural<br>dominance               | 5. 2013 PI-type<br>structural<br>dominance                                        |                      |                                                                                                                                                                                                                |
| RFA forest resource<br>types<br>reconstruction        | 6. Reconstructed<br>RFA forest resource<br>type map data                          |                      |                                                                                                                                                                                                                |
| Definitive value for<br>biophysical<br>naturalness    | 7. Definitive value<br>for biophysical<br>naturalness                             |                      |                                                                                                                                                                                                                |

#### Data processing:

The hollow dwelling species habitat indicator is derived from three inputs – old growth forest, predicted mature habitat availability mapping, and eucalypt structural dominance data. The rules for integrating the inputs are relatively complex, so there is no definitive field for hollow dwelling species habitat, which is instead attributed directly to the Level of Concern classes.

The first stage of the integration is the determination of old growth forest. The definitive field for the vegetation community is used to control attribution to only eucalypt forest types which have an old growth form (not all have this characteristic e.g. King Island and Furneaux eucalypt forests). Field mapped sources of old growth are preferred in the hierarchy and are assigned as old growth or not. Where there is no field determination of old growth it is assigned from the 2013 old growth layer provided by FT.

The definitive field for old growth is automatically transferred to the vegetation structure field, and retains primacy in the hierarchy in subsequent steps.

Where the forest is not old growth and eucalypt structural dominance has been determined from field mapping, the field mapping class is assigned.

For forest still unattributed, relative dominance of mature and regrowth eucalypt elements is then determined from classes in the 2013 PI-type structural data.

Where the vegetation is mapped as eucalypt forest and there is no structural class in any of the preceding rules, the structural class from the RFA forest resource types map is assigned.

If eucalypt forest is still unattributed from the above rules, the structural class is assigned from the definitive value for biophysical naturalness as follows:

- BN 1 Silvicultural regeneration;
- BN 2-3 Regrowth;
- BN 4-5 Predominantly regrowth.

The final attribution has limitations in area where eucalypt cover is sparse and dominated by mature trees (e.g. open woodlands in grazing systems). However there is limited occurrence of these situations within the FMU.

Codes and descriptors of the vegetation structural classes are shown below.

| Structural |                                                                            |  |  |
|------------|----------------------------------------------------------------------------|--|--|
| class      | Description                                                                |  |  |
| Non        | Not eucalypt forest                                                        |  |  |
| Reg        | Silvicultural regeneration                                                 |  |  |
| Rgr        | Regrowth                                                                   |  |  |
| PRg        | Predominantly regrowth, some mature                                        |  |  |
| PMt        | Predominantly mature, some regrowth                                        |  |  |
| Mat        | Mature                                                                     |  |  |
| OG         | Old growth (over-rides other codes where present and logically consistent) |  |  |
| MPm        | Mat / PMt (undifferentiated) - from published RFA maps                     |  |  |
| RRg        | Reg / Rgr (undifferentiated) - from published RFA maps                     |  |  |

The predicted mature eucalypt availability data is used to the attribution of Level of Concern where the forest is not old growth. This is illustrated in the Level of Concern Matrix below.

# Level of Concern matrix

| Attribute class | Level of Concern –<br>Immediate | Level of Concern -<br>Potential |
|-----------------|---------------------------------|---------------------------------|
| OG              | L                               | VH                              |
| FPA High        | L                               | VH                              |
| FPA Medium      | М                               | Н                               |
| FPA Low         | Н                               | М                               |
| Mat             | М                               | Н                               |
| PMt             | М                               | Н                               |
| PRg             | Н                               | М                               |
| Rgr             | VH                              | L                               |
| Reg             | VH                              | L                               |
| MPm             | М                               | Н                               |
| RRg             | VH                              | L                               |
| Non             | L                               | L                               |

# 3.2.1.2 Other (non-threatened priority species

*Attribute:* Known locations and modelled habitat of species which are not listed as threatened but are identified as of some concern, due to their conservation needs either not seen to be adequately met through the combination of reservation and/or normal land management practices.

The species group comprises two species of fauna and 870 flora taxa.

The fauna species in the group are the Eastern Quoll (*Dasyurus viverrinus*) and Tasmanian Bettong (*Bettongia gaimardi*). Both species have become extinct on mainland Australia since European settlement and one of the key factors implicated in their extirpation – the European Fox (*Vulpes vulpes*) – is a current threat in Tasmania. The Eastern Quoll has also been found to have declined rapidly in areas where the Tasmanian Devil (*Sarcophilus harrissi*) has declined due to Devil Facial Tumour Disease, due to a trophic cascade from removal of Devil predation on larger predators that might compete with or predate the Eastern Quoll (Hollings *et al.* 2014<sup>15</sup>).

<sup>&</sup>lt;sup>15</sup> Hollings, T., Jones, M., Mooney, N. & McCallum, H. (2014). Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian Devil. Conservation Biology, 28(1):63-75. DOI: 10.1111/cobi.12152

The flora taxa in the group are those identified by Lawrence *et al.*  $(2008^{16})$  as occurring in less than two conservation reserves in a bioregion, except where recorded in a single reserve that is larger than 1,000 ha. These species are considered in the REM as potentially poorly reserved in the bioregions where the condition applies.

### Data processing:

Habitat of species in this group is modelled from known locations recorded in the Natural Values Atlas. This process is described in the following section (threatened species) and can be identified by their classification in Attachment 6.

| Data inputs                                             | Definitive<br>fields | Attribute classes                                   | Level of<br>Concern –<br>Immediate | Level of<br>Concern -<br>Potential |
|---------------------------------------------------------|----------------------|-----------------------------------------------------|------------------------------------|------------------------------------|
| Species modelling<br>rules (script and<br>lookup table) | Sp_O_listZ           | Concatenated list of species codes                  | M<br>(any present)                 | M<br>(any present)                 |
| NVA records                                             | Sp_O_numZ            | Number of 'Other'<br>priority species<br>attributed |                                    |                                    |
| Riparian zones                                          |                      |                                                     |                                    |                                    |
| Plantations                                             |                      |                                                     |                                    |                                    |
| Waterbodies and 2d watercourses                         |                      |                                                     |                                    |                                    |
| Native vegetation                                       |                      |                                                     |                                    |                                    |

Data inputs and Level of Concern matrix:

# 3.2.1.3 Threatened species

*Attribute:* Known locations and modelled habitat of species which are listed as threatened under the Tasmanian *Threatened Species Protection Act 1995* or Commonwealth *Environment Protection and Biodiversity Conservation Act 2009*.

The group comprises 174 fauna, 462 flora and 26 taxa of fungi. Not all these taxa occur within the FMU. Some taxa are also duplicated in the lists due to multiple entries in the Natural Values Atlas (e.g. both species and subspecies).

#### Data processing:

Species are attributed in the REM through two modelling systems, which is applied to both the threatened species and other priority species (see preceding section). Each species is assigned a unique code, typically a combination of initial letters of the generic and species

<sup>&</sup>lt;sup>16</sup> Lawrence, N., Storey, D. & Whinam, J. (2008). Reservation status of Tasmanian native higher plants. February 2008, Biodiversity Conservation Branch, Department of Primary Industries & Water, Hobart. http://www.dpiw.tas.gov.au/inter.nsf/WebPages/LJEM-7CW3RX?open

names. Multiple habitat attributes are assigned for some species, where there are distinct differences in habitat characteristics for different parts of the species life cycle (e.g. where a species breeding habitat and foraging habitat have different characteristics).

The first, default, modelling system applies to all priority species unless specifically excluded. The system uses records from the NVA with basic parameters for each species to approximate habitat around known locations. Each species model uses the full set of parameters to control the attribution in the REM.

| Parameter         | Notes                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| NVA record        | The maximum accuracy of an NVA record which can be used in a species model.                                         |
| accuracy          | Accuracy is generally smaller for sessile taxa (e.g. generally localised flora) than for more mobile fauna species. |
| Model<br>distance | The distance from an NVA record in which habitat can be attributed.                                                 |
| Model year        | The earliest year an NVA record can be used for modelling habitat.                                                  |
|                   | This applies to species whose range or abundance is known to have changed from                                      |
|                   | the historical situation, hence only more recent records are used in defining extant habitat.                       |
|                   | The rule applies to species such as the Tasmanian Devil and Eastern Barred Bandicoot.                               |
| Model riparian    | Applies to species whose habitat is most frequently associated with riparian areas.                                 |
|                   | Riparian zones within the value of the model distance are attributed for the                                        |
|                   | species, along with a default distance (100m) around the recorded location.                                         |
|                   | Where NVA records are not located in or near a riparian zone, the species is                                        |
|                   | modelled only as the distance (100 m) around the location.                                                          |
| Plantations       | Controls whether a species can have habitat modelled in plantation areas.                                           |
|                   | By default most species are excluded from being attributed in plantations.                                          |
|                   | The rule applies to raptor nests (Wedge-tailed Eagle and White-bellied Sea Eagle)                                   |
|                   | whose breeding can be disrupted by disturbance in the zone around the nest,                                         |
|                   | irrespective of vegetation type.                                                                                    |
| Water             | Controls whether the species can have habitat attributed in water.                                                  |
|                   | By default most species are excluded from occurring in water.                                                       |
|                   | For some species water forms part of the habitat (e.g. fish, freshwater crayfish,                                   |
|                   | caddisflies) and so is included in the model.                                                                       |
| Native            | Controls whether the species can only have habitat attributed in native vegetation.                                 |
| vegetation        | This rule applies to relatively mobile and widespread fauna species.                                                |
|                   | A number of these species have relatively large numbers of their records from open                                  |
|                   | areas (e.g. road kills) through which they may be travelling but which do not form                                  |
|                   | the main habitat of the species.                                                                                    |
|                   | Species in this category include the Quolls, Eastern Barred Bandicoot, Tasmanian                                    |
|                   | Bettong and Tasmanian Devil.                                                                                        |

Attachment 6 identifies the species that are modelled under this process, and the rules that apply to each species.

The second modelling process in the REM is a more detailed set of habitat models for selected priority fauna species. The species modelled under this process are a subset of fauna species whose range and habitat parameters are being reviewed for use in the Forest Practices Authority Threatened Fauna Advisor. The species and descriptions used in the modelling process were those documented by the FPA as at February 2014 (v 1.4); however this is subject to ongoing review and has changed since the modelling process was commenced.

Around 130 species are included in the FPA list, of which 83 were modelled under this process for the REM. Species not modelled were generally those that do not occur in the FMU, have no clear basis on which to formulate habitat models, or are highly localised species (e.g. cave fauna) whose known locations are dealt with under the default modelling process using NVA records. Details of the species models are presented in Attachment 7.

The models can be best described as 'expert rules' models, in which each model is described in terms of the primary drivers of habitat, the spatial data used to build the model, and the rules that are applied to the data.

| Data inputs                            | Definitive<br>fields | Attribute classes                                                                             |
|----------------------------------------|----------------------|-----------------------------------------------------------------------------------------------|
| See model description for each species | Sp_T_listZ           | Concatenated list of species codes                                                            |
|                                        | Sp_T_numZ            | Number of threatened species attributed                                                       |
|                                        | Sp_stmaxZ            | Class for the highest 'status' of the species attributed (both threatened and other species): |
|                                        |                      | • 0 – No species attributed;                                                                  |
|                                        |                      | <ul> <li>4 – 'Other' priority species (no subdivision on<br/>number);</li> </ul>              |
|                                        |                      | • 3 – Single Rare or Vulnerable species;                                                      |
|                                        |                      | • 2 – Single Endangered or Critically Endangered                                              |
|                                        |                      | species;                                                                                      |
|                                        |                      | • 1 – More than one listed threatened species.                                                |

# Level of Concern matrix:

Both threatened species and other priority species modelled for the REM are assigned Level of Concern classes concurrently, using a hierarchy based on the species conservation status and, for threatened species, the number of species attributed.

| Species category/attribute | Concern – | Concern – |
|----------------------------|-----------|-----------|
|                            | Immediate | Potential |
| Two or more listed species | VH        | VH        |
| Endangered, Critically     | VH        | VH        |
| Endangered                 |           |           |
| Vulnerable, Rare           | Н         | Н         |
| 'Other' priority species   | М         | М         |
| None                       | L         | L         |

# 3.2.1.4 Integrated level of concern for Priority Species

The integrated Level of Concern index for Priority Species treats the three component issues as a hierarchy. Listed threatened species are treated as the most important element in the integration, as by legal definition these are species that are likely to become extinct if not properly managed. They occupy only the highest classes in the integration matrix. Hollow dwelling species habitat and non-listed priority species are of lesser importance in the integration. In the absence of co-occurrence with other priority species Issues, hollow dwelling species habitat is limited to a maximum class of High and non-listed priority species to a maximum class of Medium.

Level of Concern matrix:

|                                        |    | Hollow Dwelling Species Habitat |    |    |    |
|----------------------------------------|----|---------------------------------|----|----|----|
| Threatened & Other Priority<br>Species |    | VH                              | Н  | м  | L  |
| Two or more listed species             | VH | VH                              | VH | VH | VH |
| Endangered, Critically<br>Endangered   | VH | VH                              | VH | VH | VH |
| Vulnerable, Rare                       | Н  | VH                              | Н  | Н  | Н  |
| Other Priority Species                 | М  | Н                               | Н  | М  | М  |
| None                                   | L  | Н                               | М  | L  | L  |

# 3.2.2 REM vegetation conservation status

*Attribute:* Relative conservation status of the vegetation, expressed as a combination of the legislated threat status of vegetation communities, their bioregional extent, and the percentage of their extant area that is within conservation reserves.

Much of the work that has assessed vegetation conservation status and consequent priorities for management in Tasmania has used the Commonwealth's 'JANIS' criteria for establishing the comprehensive, adequate and representative reserve system (Commonwealth of Australia, 1997<sup>17</sup>).

The primary purpose of the REM is to inform management of unreserved land, so the vegetation conservation prioritisation was developed to be independent of reservation criteria while still accounting for the level of reservation across the landscape. The index consists of five elements:

<sup>&</sup>lt;sup>17</sup> Commonwealth of Australia (1997). Nationally agreed criteria for the establishment of a comprehensive, adequate & representative reserve system for forest in Australia. A report by the Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee. Commonwealth of Australia, Canberra.

- Classification of the vegetation;
- Bioregional mapping rules;
- Conservation status determinations;
- Analysis of reservation status; and
- Analysis of bioregional extent.

# Classification

The classification of ecosystems within the REM is at three levels. The base level mapping within the REM (field [Vegcom\_usZ]) is the vegetation communities from the Tasveg classification (v2). In some cases NRP undertakes field mapping at a finer scale than Tasveg, in order to make the mapping more informative to the task at hand. This level of classification is used only for mapping and not in conservation analysis or generation of indicators.

The second level of classification in the REM – REM vegetation – is an upward hierarchical classification of the base level mapping into the vegetation communities that are used for generating the standard REM indicators. Two principal factors were considered in developing the second level of classification:

First was the coherence and consistency of available mapping data. Some communities, for example wetlands or understorey types in wet forests, are mapped as sub-units of a higher level of classification, and are not necessarily mapped systematically across their range. In these instances an agglomeration of the mapping to a higher level classification is used (e.g. all Tasveg freshwater wetlands are treated as a single undifferentiated class, the three understorey-defined communities in wet *E. obliqua* forest are all treated as part of an undifferentiated wet *E. obliqua* community).

The second factor considered in developing the classification was distinctiveness. These are mapped vegetation communities, particularly forest communities, which are either distinct from the communities into which they are included for analysis of the CAR reserve system, or have distinct and recognised conservation significance. Examples of communities in this category include *E. gunnii*, *E. barberi*, *E. perriniana* and wet *E. globulus* forests, all of which are subsumed into higher level classification under the RFA.

The third level of classification is a further upward hierarchical classification of the REM vegetation to vegetation communities (ecosystems) to be used for the analysis of conservation status, reservation targets and reservation status against the JANIS criteria. In the case of the REM for the FT FMU, these communities are the 51 forest communities recognised under the RFA. This classification is used for the HCV indicators described in Section 4.

Appendix 7 shows the derivation of the vegetation communities at all three levels of classification. Figure 4 provide examples of the classification and its application at the three levels described.



#### Bioregional mapping rules

The REM analysis of vegetation conservation status incorporates assessment of the extent and reservation of communities at the bioregional level. Tasmania's nine bioregions are mapped relatively coarsely. Use of the IBRA boundaries as uninterpreted spatial data can result in vegetation communities being assigned a higher conservation significance than is warranted, due to them being spatially located in one bioregion, when their biotic and environmental characteristics are those of the nearby but non-contiguous bioregion.

To address this issue, the approach to 'fuzzy bioregions' developed by CARSAG (2004<sup>18</sup>) has been maintained and developed in the APU data layer and used for this project. Application of 'fuzzy bioregions' involved examining the distribution of every Tasveg vegetation community in turn, in relation to the mapped bioregion boundaries, and with consideration of the physical, climatic and biotic characteristics of each community.

The result of this analysis is that some patches of vegetation, while mapped in one bioregion, have been reallocated to the nearby bioregion. In the absence of this work, some vegetation communities may appear as rare in one bioregion when their occurrence is simply arising from the patchiness in the distribution of vegetation communities and/or the coarseness of the IBRA boundaries, particularly where bioregion boundaries are associated with steep climatic, physical and climatic gradients.

Figure 4 shows an example of application of fuzzy boundaries to Tasmanian forest vegetation.

Attachment 9 provides a full listing of the bioregional allocation decisions that have been incorporated into the analysis. The bioregional assessment also identified a number of instances where mapping from Tasveg has been amended to more closely match defining features at a location (e.g. to ensure consistency with geological substrate, where a defining characteristic of a community).

<sup>&</sup>lt;sup>18</sup> Comprehensive, Adequate & Representative Scientific Advisory Group (2004). Assessing reservation priorities for private forested land in Tasmania. Private Forest Reserves Program, Department of Primary Industries, Water & Environment, Hobart.



Source: CARSAG (2004), p47

#### Conservation status determinations

The conservation status of vegetation used in the REM is based on recognition of vegetation communities that are listed as threatened under either the Tasmanian *Nature Conservation Act 2002* or the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999*. The REM does not further differentiate threatened communities other than on the basis that they are listed or not. Attachment 8 indicates the communities treated as threatened. Additional assessment of JANIS threat categories was undertaken for the HCV indicators and is described in section 4.

#### Reservation status

Reservation is the percentage of the vegetation community that is within conservation reserves. Data on the extent and percentage reservation of each community is calculated both within the bioregion and for Tasmanian as a whole. For the REM for the FMU, these data were updated to reflect the DPIPWE 2013 Tasmanian reserves spatial layer, which includes the ungazetted tranches two and three of the *Tasmanian Forests Agreement Act 2013* as informal reserves and hence are counted as part of the reserved area.

The percentage of reservation used in the Native Vegetation Index is the lower of the State and bioregional reservation figures. A lower bioregional reservation percentage may indicate a higher priority for conservation within the bioregion, while a lower Statewide reservation percentage may indicate a lower priority within the bioregion but a higher priority in others. It should be noted that this assessment of reservation is primarily concerned with informing management on unreserved land. Reservation relative to targets is addressed in section 4.3.3.

#### Bioregional extent

The bioregional extent of each vegetation community used in the analysis was calculated from the APU data layer used as the vegetation input to the REM. The data are banded using the rules developed in the original formulation of the REM. These bands were derived from expert opinion after analysis indicated there were no clear disjunctions in the range of extent of the communities by bioregion.

|                                     | Concern – Immediate & Potential<br>Reservation level (% extent in bioreigon) |        |        |      |
|-------------------------------------|------------------------------------------------------------------------------|--------|--------|------|
| Status and bioregional extent       | <10%                                                                         | 10-30% | 30-60% | >60% |
| Threatened                          |                                                                              |        |        |      |
| Any                                 | VH                                                                           | VH     | Н      | Н    |
| Bioregional Extent (not threatened) |                                                                              |        |        |      |
| <2,000ha                            | VH                                                                           | VH     | Н      | М    |
| 2,000-5,500ha                       | VH                                                                           | VH     | М      | M    |
| 5,500-15,000ha                      | VH                                                                           | Н      | М      | L    |
| 15,000-55,000ha                     | Н                                                                            | М      | L      | L    |
| >55,000ha                           | М                                                                            | L      | L      | L    |

#### Level of Concern matrix:

#### Notes:

For threatened communities, only Conservation Status and Reservation Status influence the Index. For non-threatened communities, Bioregional Extent and Reservation Status are combined to produce the Index values. All non-native vegetation communities, along with water, rock, sand and mud are assigned a Low value on the Index.

# 3.2.3 Integrated index for Biological Significance

*Attribute:* An overall indicator of the priority for management consideration of the biota of an area, as represented either through the surrogacy provided by vegetation communities or as species or species groups that have been identified as of additional conservation or management concern.

The Biological Significance Index matrix of the REM was developed to reflect an assumed equal level of importance to Vegetation Conservation Status and Priority Species Significance. Each unique combination (n=16) of the two input matrices was generated and a qualitative assessment undertaken to assign priorities. The assessment can be described as mostly giving preference to the maximum of the input matrices, except where a cumulative significance was identified (e.g. where both input matrices were High the overall combined index was assigned to Very High).

|                   | Priority Species Index |    |    |    |
|-------------------|------------------------|----|----|----|
| Native Vegetation | VH                     | Н  | М  | L  |
| index             |                        |    |    |    |
| VH                | VH                     | VH | VH | VH |
| Н                 | VH                     | VH | Н  | Н  |
| М                 | VH                     | Н  | М  | М  |
| L                 | VH                     | н  | М  | L  |

# Level of Concern matrix:

The integration matrix has also been ranked on each of the combinations of inputs. The ranked orders are intended to facilitate finer scale assessment of attributes and variation if required. It should be noted that although the tables use the same combinations for Level of Concern both Immediate and Potential, the resultant indices change in response to whether the inputs are from the Immediate or Potential perspective.

| Native<br>vegetation | Priority<br>species | Biological<br>Significance<br>Index | Rank (1 =<br>highest) |
|----------------------|---------------------|-------------------------------------|-----------------------|
| VH                   | VH                  | VH                                  | 1                     |
| н                    | VH                  | VH                                  | 2                     |
| VH                   | Н                   | VH                                  | 3                     |
| н                    | Н                   | VH                                  | 4                     |
| М                    | VH                  | VH                                  | 5                     |
| L                    | VH                  | VH                                  | 6                     |
| VH                   | М                   | VH                                  | 7                     |
| VH                   | L                   | VH                                  | 8                     |
| М                    | Н                   | Н                                   | 9                     |
| L                    | Н                   | Н                                   | 10                    |
| н                    | М                   | Н                                   | 11                    |
| н                    | L                   | Н                                   | 12                    |
| М                    | М                   | М                                   | 13                    |
| L                    | М                   | М                                   | 14                    |
| М                    | L                   | М                                   | 15                    |
| L                    | L                   | L                                   | 16                    |

# 3.3 Biodiversity Management Priority

*Attribute:* An overall indicator of the priority for management consideration of the biodiversity of an area, based on the biological significance of the biota it contains and the ability of the landscape's functional ecological characteristics to maintain the biota.

The Biodiversity Management Priority Index was developed to reflect an assumed equal importance of the Biological Significance and Landscape Function indices. Landscapes that are ecologically functional will frequently contain fewer elements of biodiversity which need active or concentrated management, but need to be maintained with adequate function to prevent such needs emerging. Areas that contain features of higher biological significance may occur anywhere but tend to be more concentrated in landscapes with poorer ecological function.

Each unique combination (n=16) of the input matrices was generated and a qualitative assessment undertaken to assign Priority categories. The results of the assessment and its characteristics were the same as for the Biological Significance Index, i.e. preference was generally given to the maximum value of the input matrices, except where a cumulative significance was identified. Notional averaging of large differences in the input values to the matrix was not considered appropriate, as higher values of each Index were considered not to be diminished by the absence of a corresponding high value in the other Index.

#### Level of Concern matrix:

|                                     | Landscape Function Index |    |    |    |  |
|-------------------------------------|--------------------------|----|----|----|--|
| Biological<br>Significance<br>Index | VH                       | Н  | Μ  | L  |  |
| VH                                  | VH                       | VH | VH | VH |  |
| Н                                   | VH                       | VH | Н  | H  |  |
| М                                   | VH                       | Н  | М  | М  |  |
| L                                   | VH                       | Н  | М  | L  |  |

The integration matrix has also been ranked on each of the combinations of inputs. The ranked orders are intended to facilitate finer scale assessment of attributes and variation if required. It should be noted that although the tables use the same combinations for Level of Concern both Immediate and Potential, the resultant indices change in response to whether the inputs are from the Immediate or Potential perspective.

| Landscape<br>Ecological<br>Function | Biological<br>Significance | Biodiversity<br>Management<br>Priority | Rank<br>(1 = highest) |
|-------------------------------------|----------------------------|----------------------------------------|-----------------------|
| VH                                  | VH                         | VH                                     | 1                     |
| Н                                   | VH                         | VH                                     | 2                     |
| VH                                  | Н                          | VH                                     | 3                     |
| М                                   | VH                         | VH                                     | 4                     |
| VH                                  | М                          | VH                                     | 5                     |
| L                                   | VH                         | VH                                     | 6                     |
| н                                   | Н                          | VH                                     | 7                     |
| VH                                  | L                          | Н                                      | 8                     |
| М                                   | Н                          | Н                                      | 9                     |
| Н                                   | М                          | Н                                      | 10                    |
| L                                   | Н                          | Н                                      | 11                    |
| Н                                   | L                          | Н                                      | 12                    |
| М                                   | М                          | М                                      | 13                    |
| L                                   | М                          | М                                      | 14                    |
| М                                   | L                          | М                                      | 15                    |
| L                                   | L                          | L                                      | 16                    |

# 4. HIGH CONSERVATION VALUE INDICATOR SPECIFICATIONS FOR THE FOREST MANAGEMENT UNIT

One of the uses of the REM is in the assessment of HCVs. A number of the standard indicators are directly relevant to HCVs but FT identified a range of others as required. This was based on consideration of the criteria and definitions of the different HCVs within the FSC Australia HCV evaluation framework (FSC Australia, 2013<sup>19</sup>).

The indicators were developed by interrogation of combinations of data already within the REM or by generating new data from other sources. The indicators were then added to lookup tables, where required, and then to the REM via a series of GIS scripts developed for each additional indicator. All indicators are expressed spatially within the REM.

# 4.1 **Priority species indicators**

# 4.1.1 Number of endemic priority species

Indicator: A count of the number of endemic priority species.

HCV criteria: 1.

*Summary:* Tasmania is home to a relatively large number of endemic species, some of which occur over very large areas of the State and are likely to result in very few areas being identified with no endemic species present. It was considered that the management requirements of the HCV areas with high species endemism are likely to be more important where there are higher numbers of endemic priority species. Additional data interpretation of species endemism and identification of areas is contained in the Comprehensive Regional Assessment treatment of National Estate Values (Tasmanian Public Land Use Commission, 1997<sup>20</sup>).

*Data processing:* Each priority species in the REM lookup table was checked for NVA classification of endemism. Where no code was indicated ( $n = \sim 230$ ) additional reference material was consulted so that each species was definitively coded as endemic or not. A GIS script was then run to count the number of endemic priority species attributed for each point in the REM and to write the count to a separate field.

*Output field:* [EndSp\_num]

http://www.fscaustralia.org/sites/default/files/Australia%20HCV%20Framework%20Final%203-4.pdf

<sup>&</sup>lt;sup>19</sup> FSC Australia (2013). High Conservation Values (HCVs) evaluation framework for use in the context of implementing FSC certification to the FSC Principles and Criteria & Controlled Wood standards. Version 3.4, March 2013, FSC Australia, Melbourne.

<sup>&</sup>lt;sup>20</sup> Tasmanian Public Land Use Commission (1997). Tasmania-Commonwealth Regional Forest Agreement background report part H: National Estate report. February 1997, Tasmanian Public Land Use Commission, Hobart.

# 4.1.2 Species reservation index

The species reservation index is compiled from three separate analyses of reservation – nonlisted priority flora species, threatened flora and threatened fauna. The index was compiled from the different sources as there were no data available on fauna reservation levels, and poorly reserved flora were recorded in the standard REM species table only where they were not threatened, as reservation status does not affect the REM indicator for threatened flora species.

Each input to the index is described separately below, followed by a description of the integrated species reservation index. The inputs to the index are shown below.



# 4.1.2.1 Number of poorly reserved non-listed priority flora species

Indicator: Count of the number of poorly reserved species that are not listed as threatened.

# HCV criteria: 1.

*Summary:* Poorly reserved non-listed flora species are identified in the REM using data from the analysis of Lawrence et al. (2008<sup>21</sup>), which presents a breakdown of each species by bioregion and the size and number of reserves in which it is recorded. Species are considered to be poorly reserved in the REM if they occur in less than two reserves in a bioregion, except where they occur in a single reserve larger than 1,000 ha.

<sup>&</sup>lt;sup>21</sup> Lawrence, N., Storey, D. & Whinam, J. (2008). Reservation status of Tasmanian native higher plants. February 2008, Biodiversity Conservation Branch, Department of Primary Industries & Water, Hobart. http://www.dpiw.tas.gov.au/inter.nsf/WebPages/LJEM-7CW3RX?open

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

*Data processing:* The REM species lookup table is populated with the list of bioregions in which each species is considered to be poorly reserved, which are attributed spatially in the REM as outlined in Section 3.2.1.2. Species in this category are only attributed where they are not threatened, as reservation status does not affect the standard REM indicator for threatened species. Data on poorly reserved non-listed species is stored in the REM as part of the total number of non-listed priority species (field [Sp\_O\_numZ]). A separate attribute for the number of poorly reserved non-listed flora species was generated using a GIS script which discounted the total number of non-listed priority species by the number that are fauna. (This approach was adopted for efficiency, as only two of the non-listed priority species are fauna).

*Output field:* [Flora\_poor]

# 4.1.2.2 Number of poorly reserved threatened fauna species

Indicator: Count of the number of poorly reserved threatened fauna species.

# HCV criteria: 1.

Summary: Poorly reserved threatened fauna species were defined as:

- Endangered or Critically Endangered species with records in reserves on less than 30% of the land systems on which the species has been recorded; or
- Rare or Vulnerable species with records in reserves on less than 15% of the land systems on which the species has been recorded.

*Data processing:* A separate GIS layer integrating the 2013 Tasmanian reserves spatial layer, land systems and land systems components data was prepared. A GIS script was developed to select each species in turn, select all NVA records with spatial accuracy <=500 m, and select all polygons from the integrated reserves and land systems layer that intersect the records. The number of land systems on which the species has been recorded was summed, as was the number of the land systems where a record of the species occurred in a reserve. These data were added to the species lookup table and the proportion of land systems on which the species has been recorded in reserves was calculated, and a separate field attributed if the species was indicated as poorly reserved.

Where the number of land systems was too low for reliable calculation of proportions, a schema based on whole numbers was used to determine whether the species was poorly reserved, as shown below.

| Land Systems<br>(n) | Species<br>End. / Crit. End. | Species<br>Rare / Vulnerable |
|---------------------|------------------------------|------------------------------|
| 1                   | 1                            | 1                            |
| 2                   | 1                            | 1                            |
| 3                   | 1                            | 1                            |
| 4                   | 2                            | 1                            |
| 5                   | 2                            | 2                            |
| 6                   | 2                            | 1                            |
| >=7                 | 0.3 * n                      | 0.15 * n                     |

The reservation data were also generated for land systems components for comparison, but do not form part of the index. The results of both analyses are included in Attachment 6.

A second GIS script was then run over data to generate a count of the number of threatened fauna species at any point in the REM that are considered to be poorly reserved.

*Output field:* [Fauna\_poor]

#### 4.1.2.3 Number of poorly reserved threatened flora species

Indicator: Count of the number of poorly reserved threatened flora species.

HCV criteria: 1.

Summary: As for poorly reserved threatened fauna species.

Data processing: As for poorly reserved threatened fauna species.

*Output field:* [FlorT\_poor]

#### 4.1.2.4 Integrated species reservation index

*Indicator:* Summed total of the number of poorly reserved non-listed flora; threatened flora and threatened fauna.

HCV criteria: 1.

*Summary:* Indicator is a sum of the three inputs described above.

*Data processing:* A field containing the sum of the input fields ([Flora\_poor], [FlorT\_poor] and [Fauna\_poor]) was added and populated.

*Output field:* [Sppres\_ndx]

#### 4.1.3 Threatened species concentration index

An overall index of the concentration of threatened species was derived from a number of inputs and classifications. These are described separately below, followed by a description of the integrated index.

The habitat, distribution, sensitivity and population characteristics of threatened species vary enormously. Some species occur widely across the landscape and, while threatened, are sensitive to only certain types of disturbance (albeit some critically). Other species are more localised and may need all of their extent to be protected. These factors apply particularly to Tasmanian threatened fauna. Two concepts were developed as a means of providing differentiation among species based on variation in these characteristics – Landscape Dependent Fauna (LDF) and fauna species with Critically Limited Locations (CLL).

The LDF species group was created as a means to differentiate the species that occur widely across the landscape. These species are not necessarily sensitive to loss of any one area from their distribution. Instead they are considered to be dependent on an adequate supply of key habitat features at the landscape scale across their distribution. Table 4 shows the species considered to have the characteristics of LDF. Within this group was identified a further attribute for den, nest or roost sites, which may be locally sensitive.

CLL fauna species were used to identify those species whose distribution is either highly restricted, or whose range of environmental situations in which the species occurs is limited. These species are considered either more likely to be sensitive to loss, disturbance or inappropriate management, or to carry greater risk to survival of the species across its range. CLL species were defined as those that have been recorded on only one land system or on no more than six land system components (six components generally being the maximum number in a land system). 84 fauna species were identified as meeting the criteria for CLL (Table 5). Not all the species occur in the FMU.

| Species                                          | EPBC<br>status | TSPA<br>status | Dens /<br>nest<br>/roosts | Notes                                                                                         |
|--------------------------------------------------|----------------|----------------|---------------------------|-----------------------------------------------------------------------------------------------|
| Australian Grayling                              | VU             | V              |                           |                                                                                               |
| (Prototroctes maraena)                           |                |                |                           |                                                                                               |
| Bass Strait Wombat                               | VU             |                |                           | Species does not occur in FMU.                                                                |
| ( <i>Vombatus ursinus</i> subsp.                 |                |                |                           | Included for completeness.                                                                    |
| ursinus)                                         |                |                |                           |                                                                                               |
| Clarence Galaxias                                | EN             | е              |                           |                                                                                               |
| (Galaxias johnstoni)                             |                |                |                           |                                                                                               |
| Eastern Barred Bandicoot<br>(Perameles gunnii)   | VU             |                |                           |                                                                                               |
| Eastern Quoll<br>( <i>Dasyurus viverrinus</i> )  |                |                | Y                         | Non-listed species. Not part of<br>index but included for<br>completeness. No dens in<br>NVA. |
| Giant Freshwater Crayfish<br>(Astacopsis gouldi) | VU             | V              |                           |                                                                                               |
| Grey Goshawk                                     |                | е              | Y                         |                                                                                               |
| (Accipiter novaehollandiae)                      |                |                |                           |                                                                                               |
| Masked Owl                                       | VU             | е              | Y                         |                                                                                               |
| (Tyto novaehollandiae)                           |                |                |                           |                                                                                               |
| Spotted-tailed Quoll                             | VU             | r              | Y                         | Only one den in NVA.                                                                          |
| (Dasyurus maculatus)                             |                |                |                           |                                                                                               |
| Swan Galaxias                                    | EN             | е              |                           |                                                                                               |
| (Galaxias fontanus)                              |                |                |                           |                                                                                               |
| Swift Parrot                                     | EN             | е              | Y                         |                                                                                               |
| (Lathamus discolor)                              |                |                |                           |                                                                                               |
| Tasmanian Azure Kingfisher                       | EN             | е              | Y                         | No nest site data currently                                                                   |
| ( <i>Ceyx azureus</i> subsp.                     |                |                |                           | available. Species nests in                                                                   |
| diemenensis)                                     |                |                |                           | areas adjacent to rivers.                                                                     |
| Tasmanian Bettong                                |                |                |                           | Non-listed species. Not part of                                                               |
| (Bettongia gaimardi)                             |                |                |                           | index but included for                                                                        |
|                                                  |                |                |                           | completeness.                                                                                 |
| Tasmanian Devil                                  | EN             | е              |                           | Only post-2005 recorded                                                                       |
| (Sarcophilus harrisii)                           |                |                |                           | locations are included as                                                                     |
|                                                  |                |                |                           | extant nabitat. Approximately                                                                 |
| Wodge tailed Fagle                               | EN             | ~              | v                         | SU GENS IN INVA.                                                                              |
| VVeuge-talleu Edgle                              | EIN            | е              | ř                         |                                                                                               |
| White-bellied See Eagle                          |                | V              | v                         |                                                                                               |
| (Haliapptus laucoaaster)                         |                | v              | I                         |                                                                                               |
| (munueetus ieutoguster)                          |                |                |                           |                                                                                               |

Table 4. Landscape Dependent Fauna

| Species                                                                              | EPBC | TSPA<br>status |
|--------------------------------------------------------------------------------------|------|----------------|
| King Island Brown Thornbill ( <i>Acanthiza pusilla</i> subsp.<br><i>archibaldi</i> ) | EN   | e              |
| King Island Scrubtit (Acanthornis magna subsp.<br>greeniana)                         | CR   | е              |
| Chevron looper moth (Amelora acontistica)                                            |      | v              |
| Rapid River freshwater snail (Beddomeia angulata)                                    |      | r              |
| Hydrobiid snail (West Gawler) ( <i>Beddomeia averni</i> )                            |      | е              |
| Bell's freshwater snail (Beddomeia bellii)                                           |      | r              |
| Hydrobiid snail (Bowry Creek) (Beddomeia bowryensis)                                 |      | r              |
| Hydrobiid snail (Cam River) (Beddomeia camensis)                                     |      | е              |
| Hydrobiid snail (Table Cape) ( <i>Beddomeia capensis</i> )                           |      | е              |
| Hydrobiid snail (Heathcote Creek) (Beddomeia fallax)                                 |      | r              |
| Forth River freshwater snail (Beddomeia forthensis)                                  |      | r              |
| Hydrobiid snail (Frankland River) ( <i>Beddomeia</i><br><i>franklandensis</i> )      |      | r              |
| Hydrobiid snail (Frome River) (Beddomeia fromensis)                                  |      | е              |
| Hydrobiid snail (Farnhams Creek) (Beddomeia fultoni)                                 |      | е              |
| Hydrobiid snail (Salmon River Road) ( <i>Beddomeia gibba</i> )                       |      | r              |
| Hydrobiid snail (Buttons Rivulet) (Beddomeia hallae)                                 |      | е              |
| Hydrobiid snail (Viking Creek) (Beddomeia hermansi)                                  |      | е              |
| Hulls freshwater snail (Beddomeia hullii)                                            |      | r              |
| Upper Castra freshwater snail (Beddomeia inflata)                                    |      | r              |
| Hydrobiid snail (Macquarie River) ( <i>Beddomeia kershawi</i> )                      |      | e              |
| Hydrobiid snail (Dip Falls) (Beddomeia kessneri)                                     |      |                |

| Species                                                                         | EPBC   | TSPA   |
|---------------------------------------------------------------------------------|--------|--------|
| ·                                                                               | status | status |
| Hydrobiid snail (St. Pauls River) (Beddomeia krybetes)                          |        | V      |
| Hydrobiid snail (Cataract Gorge) ( <i>Beddomeia</i><br><i>launcestonensis</i> ) |        | e      |
| Castra Rivulet freshwater snail (Beddomeia lodderae)                            |        | v      |
| Blythe River freshwater snail (Beddomeia petterdi)                              |        | е      |
| Hydrobiid snail (Keddies Creek) ( <i>Beddomeia phasianella</i> )                |        | v      |
| Hydrobiid snail (Emu River) (Beddomeia protuberata)                             |        | r      |
| Hydrobiid snail (St Patricks River) (Beddomeia ronaldi)                         |        | е      |
| Hydrobiid snail (Salmon River) (Beddomeia salmonis)                             |        | r      |
| Savage River Mine freshwater snail ( <i>Beddomeia</i> trochiformis)             |        | r      |
| Hydrobiid snail (Great Lake) ( <i>Beddomeia tumida</i> )                        |        | е      |
| Claytons Rivulet freshwater snail ( <i>Beddomeia</i><br>waterhouseae)           |        | е      |
| Wilmot River freshwater snail (Beddomeia wilmotensis)                           |        | r      |
| Hydrobiid snail (Blizzards Creek) (Beddomeia wiseae)                            |        | v      |
| Zeehan freshwater snail (Beddomeia zeehanensis)                                 |        | r      |
| Great Lake glacidorbid snail (Benthodorbis pawpela)                             |        | r      |
| Craggy Island cave cricket (Cavernotettix craggiensis)                          |        | r      |
| Tunbridge looper moth (Chrysolarentia decisaria)                                |        | е      |
| Saltmarsh looper moth (Dasybela achroa)                                         |        | v      |
| Ammonite snail (Discocharopa vigens)                                            | CR     | е      |
| Flinders Island cave slater (Echinodillo cavaticus)                             |        | r      |
| Caddis fly (Macquarie River) ( <i>Ecnomina vega</i> )                           |        | r      |

# Table 5. Fauna species with Critically Limited Locations

| Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPBC   | TSPA   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| Woldborough foract waavil (Enchymus on nav)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | status | status |
| Summer in the second se | ENI    | 1      |
| Furneaux burrowing crayfish (Engaeus martigener)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EN     | V      |
| Hydrobiid snail (Great Lake) (Glacidorbis pawpela)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | pr     |
| Cave Beetle (Ida Bay) or blind cave beetle (Goedetrechus mendumae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | v      |
| Salt lake slater ( <i>Haloniscus searlei</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | е      |
| Ida Bay cave harvestman ( <i>Hickmanoxyomma cavaticum</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | r      |
| Bornemissza's stag beetle (Hoplogonus bornemisszai)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CR     | е      |
| Caddis fly (St Columba Falls) (Hydrobiosella sagitta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | r      |
| Caddis fly (Upper Scamander River) ( <i>Hydroptila scamandra</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | r      |
| Cave beetle (Hastings Cave) (Idacarabus cordicollis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | r      |
| Ida Bay cave beetle (Idacarabus troglodytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | r      |
| Isopod (Great Lake) (Mesacanthotelson setosus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | r      |
| Isopod (Great Lake) (Mesacanthotelson tasmaniae)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | r      |
| Southern sandstone cave cricket (Micropathus kiernani)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CR     | е      |
| Spider (Cataract Gorge) or Plomley's trapdoor spider ( <i>Migas plomleyi</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | е      |
| Stanley snail ( <i>Miselaoma weldii</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | е      |
| Eastern Curlew (Numenius madagascariensis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | е      |
| Caddis fly (South Esk River) ( <i>Oecetis gilva</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | r      |
| Cave spider (Bubs Hill Cave) ( <i>Olgania excavata</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | r      |
| Isopod (Great Lake & Shannon Lagoon) ( <i>Onchotelson brevicaudatus</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | r      |
| Isopod (Great Lake) (Onchotelson spatulatus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | е      |
| Caddis fly (Wedge River) (Orphninotrichia maculata)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | r      |

| Species                                                                       | EPBC<br>status | TSPA<br>status |
|-------------------------------------------------------------------------------|----------------|----------------|
| Caddis fly (Derwent River) (Orthotrichia adornata)                            |                | r              |
| Great Lake galaxias (Paragalaxias eleotroides)                                | VU             | v              |
| Arthurs galaxias (Paragalaxias mesotes)                                       | EN             | e              |
| Cave cricket (Parvotettix rangaensis)                                         |                | r              |
| Whinray's cave cricket (Parvotettix whinrayi)                                 |                | r              |
| Snail (Cataract Gorge) (Pasmaditta jungermanniae)                             |                | v              |
| Warratah Road freshwater snail ( <i>Phrantela annamurrayae</i> )              |                | r              |
| Little Henty River freshwater snail (Phrantela conica)                        |                | r              |
| Heazlewood River freshwater snail ( <i>Phrantela marginata</i> )              |                | r              |
| Green Rosella (King Island) ( <i>Platycercus caledonicus brownii</i> )        |                | v              |
| Lake Fenton trapdoor spider (Plesiothele fentoni)                             |                | e              |
| Tasmanian hairstreak ( <i>Pseudalmenus chlorinda</i> tax<br><i>myrsilus</i> ) |                | r              |
| Cave pseudoscorpion (Mole Creek)<br>(Pseudotyrannochthonius typhlus)          |                | r              |
| Caddis fly (Corinna) (Ramiheithrus kocinus)                                   |                | r              |
| Silky snail ( <i>Roblinella agnewi</i> )                                      |                | r              |
| Schayer's grasshopper (Schayera baiulus)                                      |                | е              |
| Caddis fly (Bluff Hill Creek) (Stenopsychodes lineata)                        |                | r              |
| Caddis fly (Huon & Picton Rivers) (Tasimia drepana)                           |                | r              |
| Amphipod (Great Lake) (Tasniphargus tyleri)                                   |                | r              |
| Isopod (Great Lake) (Uramphisopus pearsoni)                                   |                | r              |

The inputs to the index and other attributes generated but not used directly are shown below.



# 4.1.3.1 Den and nest sites of Landscape Dependent Fauna

*Indicator:* A count of the number of species which have known dens or nests in an area, and known roosts of the Masked Owl.

#### HCV criteria:1.

*Summary:* Den and nest sites of LDF represent sites which may be sensitive to loss, disturbance or inappropriate management, within the otherwise extensive range of these species. Den and nest data is recorded in the NVA but the completeness of data varies significantly between species. Some species, such as Wedge-tailed Eagles and White-bellied Sea Eagles have numbers of records which may represent a significant proportion of the total in the State. For other species, such as dens of Tasmanian Devils (n = 30) and Spotted-tailed Quolls (n = 1), the coverage is far from complete or virtually lacking.

*Data processing:* Den and nest sites are tagged as a separate attributes in the REM species lookup table, in addition to other attributes of species habitat such as foraging or breeding habitat or habitat around known locations. For example, nests of the Swift Parrot are coded SP\_n, while foraging habitat is coded SP\_f. Dens, nests and roosts are also attributed in the NVA records. The species modelling process separately generates habitat associated with dens and nests, and assigns it a distinct code in the lists of species codes in the REM. Thus for these species it is possible to distinguish the different elements of the habitat (note that multiple habitat attributes of the one species are still only counted as a single species).

A separate GIS script is run on the completed REM layer to count the number of species which have dens or nests attributed in an area. This data is stored in a separate field in the REM.

*Output field:* [LDF\_denest]

# 4.1.3.2 Number of threatened Landscape Dependent Fauna

*Indicator:* The number of threatened LDF fauna species in an area.

# HCV criteria: 1.

Summary: See discussion of the LDF concept in Section 3.2.1.3 above.

*Data processing:* A GIS script is used to test each concatenated list of threatened species codes, and to sum the number of species attributed for each point in the REM. The script controls for species with multiple habitat attributes so they are only counted once. The count of the number of LDF species is written to a separate field.

*Output field:* [LDF\_RTE]

# 4.1.3.3 Number of threatened species that are not Landscape Dependent Fauna

Indicator: The number of threatened species (flora and fauna) in an area that are not LDF.

### HCV criteria: 1.

*Summary:* Threatened species that are not LDF are considered more likely to be sensitive to loss, disturbance or inappropriate management. Risk to these species is also magnified where the total number of sites or areas where they occur is small. The indicator facilitates identification of areas that may be sensitive for threatened species.

*Data processing:* The GIS processing of this group of species is the opposite to that of LDF. Each concatenated string of species codes is tested, with the total number of threatened species (field [Sp\_T\_numZ]) reduced for each occurrence of an LDF. The resultant count is written to a separate field. This is equivalent to the sum of the numbers of non-LDF species that are Endangered or Critically Endangered (section 4.1.3.4) or Vulnerable or Rare (section 4.1.3.5).

### Output field: [Thr\_notLDF]

*Note:* The data stored in the output field is for information only and is not used in the integrated index, which distinguishes species in this class based on their threat status.

# 4.1.3.4 Number of Endangered or Critically Endangered species that are not Landscape Dependent Fauna

*Indicator:* The number of species of flora and fauna which are not LDF but are listed as Endangered or Critically Endangered.

# HCV criteria: 1.

*Summary:* This indicator is a subset of the total number of threatened species that are not LDF. Conservation status data is stored within the REM species lookup table, which includes a separate field attributing species that are either Endangered or Critically Endangered.

*Data processing:* GIS processing for this group of species tests each species in the concatenated list of species codes (field [Sp\_T\_listZ]) to first determine they are not LDF, and then that they are Endangered or Critically Endangered. The count of the number of species meeting the criteria is written to a separate field.

*Output field:* [End\_notLDF]

# 4.1.3.5 Number of Rare or Vulnerable species that are not Landscape Dependent Fauna

*Indicator:* The number of species of flora and fauna which are not LDF but are listed as Vulnerable or Rare.

HCV criteria: 1.

*Summary:* This indicator is a subset of the total number of threatened species that are not LDF. Conservation status data is stored within the REM species lookup table, which includes a separate field attributing species that are either Vulnerable or Rare.

*Data processing:* GIS processing for this group of species tests each species in the concatenated list of threatened species codes (field [Sp\_T\_listZ]) to first determine they are not LDF, and then that they are Vulnerable or Rare. The count of the number of species meeting the criteria is written to a separate field.

*Output field:* [RV\_notLDF]

# 4.1.3.6 Number of species with Critically Limited Locations

*Indicator:* A count of the number of species in an area that are characterised as having Critically Limited Locations.

HCV criteria: 1.

Summary: See discussion of the CLL concept in section 4.1.3 above.

*Data processing:* A GIS script is used to test each concatenated list of threatened species codes, and to sum the number of species attributed for each point in the REM. The script controls for species with multiple habitat attributes so they are only counted once. The count of the number of LDF species is written to a separate field.

*Output field:* [CLL\_spp]

# 4.1.3.7 Number of raptor species nest territories

Indicator: A count of the number of raptor species whose territories occur in an area.

### HCV criteria: 1.

*Summary:* The raptor species used in the indicator are those that are listed as threatened, i.e. Masked Owl, Wedge-tailed Eagle, Grey Goshawk and White-bellied Sea Eagle. Codes for these species are given a unique attribute suffixed to indicate nest sites (xxxx\_n). Masked Owl roost sites are also included within this attribution.

*Data processing:* Raptor nest territories are modelled in the REM using NVA record location data. A subsequent GIS script is used to find areas containing nests (indicated by the present of "\_n;") in the list of species codes, and to then count the number of species with the attribute. The count of the number of species is written to a separate field.

### Output field: [Raptor\_nst]

*Note:* This indicator is recorded separately in the REM for information. It is not used directly in the integrated index, as it is a sublet of the indicator for den and nest sites of LDF (section 4.1.3.1).

### 4.1.3.8 Integrated threatened species concentration index

*Indicator:* A score indicating the relative concentration of threatened species, weighted by species threat status, habitat specificity and distribution.

# HCV criteria: 1.

*Summary:* Species conservation status in the indictor is differentiated into two groups – species that Endangered or Critically Endangered, and species that are Rare or Vulnerable. Habitat specificity is differentiated into three classes – LDF species, den and nest sites of LDF species, and other species. Distribution of species is differentiated on the basis of them being CLL species or not. The index gives a high weighting to species that are of more threatened conservation status, greater habitat specificity and more limited distribution.

| Habitat specificity & distribution      | Rare / Vulnerable<br>species | Endangered / Critically Endangered<br>species |
|-----------------------------------------|------------------------------|-----------------------------------------------|
| LDF species – den / nest sites          | 1                            | 100                                           |
| LDF species - habitat                   | 0                            | 10                                            |
| Other (not LDF) species with<br>CLL     | 1                            | 100                                           |
| All other species (i.e. not CLL or LDF) | 1                            | 10                                            |

*Data processing:* A GIS script is used to assess the inputs to the indicator described in the preceding sections, and where necessary match the each species in the concatenated string of species codes to the its conservation status in the species lookup table. The resultant integrated index is the sum of the 'scores' for each species at a location, and is written to a separate field.

*Output field:* [RTEcon\_ndx]

# 4.1.4 Species depletion index

*Indicator:* An indicator of the relative depletion of the species present in an area and their former population size or distribution, weighted by the species conservation status and its extant distribution.

HCV criteria: 1.

*Summary:* Species depletion is an explicit factor in determining whether species are listed as threatened. It is used in species determinations for the Commonwealth EPBC Act<sup>22</sup> and the Tasmanian TSP Act<sup>23</sup>, and is also part of the IUCN framework for maintenance of the global 'Red List' of threatened species. Rare species are generally considered not to have been significantly depleted; they are naturally rare and the risk to their survival is largely from stochastic factors. Vulnerable and Endangered species have higher levels of depletion, including potential future depletion, included as part of the guidelines for listing.

| Species conservation status        | Not CLL species | <b>CLL species</b> |  |
|------------------------------------|-----------------|--------------------|--|
| Rare                               | 0               | 0                  |  |
| Vulnerable                         | 1               | 2                  |  |
| Endangered / Critically Endangered | 2               | 3                  |  |

*Data processing:* A GIS script is used to test each concatenated list of species codes in the REM and assign the appropriate 'score' to each species. The scores for each species are summed to generate the indicator for the location, which is written to a separate field.

*Output field:* [SppDep\_ndx]

http://www.environment.gov.au/system/files/pages/d72dfd1a-f0d8-4699-8d43-5d95bbb02428/files/guidelinesspecies.pdf (Cited: 11 Mar 2014)

<sup>&</sup>lt;sup>22</sup> Threatened Species Scientific Committee (nd). Guidelines for assessing the conservation status of native species according to the Environment Protection and Biodiversity Conservation Act 1999 (the EPBC Act) and EPBC Regulations 2000. Australian Government, Canberra.

<sup>&</sup>lt;sup>23</sup> Department of Primary Industries, Parks, Water & Environment (2008). Guidelines for the listing of species under the Tasmanian Threatened Species Protection Act 1995. Revised guidelines as at 29/10/08, Department of Primary Industries, Parks, Water & Environment, Hobart. http://www.dpiw.tas.gov.au/inter,nsf/Attachments/LBUN-59X7G2?open

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

# 4.2 Old growth forest indicators

# 4.2.1 Conservation status of old growth forests

*Indicator:* Conservation status category of type 1 old growth forests, determined on a bioregional basis using the JANIS criteria.

# HCV criteria: 3.

*Summary:* Old growth forests are considered to be an HCV under the FSC Australia HCV evaluation framework. Type 1 old growth forests are those mapped to the definition used in the RFA, i.e. old growth forests are ecologically mature forests where the effects of disturbance are now negligible. Old growth forests are classified under the JANIS criteria as:

- Rare generally having an extent of 1,000 ha or less in the bioregion ("R");
- Depleted –the proportion of a forest community which is old growth is around 10% of the total community area ("D"); and
- Present but not Rare or Depleted ("p").

The categories of Rare and Depleted are not exclusive; old growth forest may be either Rare or Depleted or both ("RD").

*Data processing:* Old growth forest mapping was integrated into the REM and old growth determined using logical rules based on the associated vegetation community having a recognised old growth form, and equivalence between Tasveg communities and RFA communities for JANIS analysis (see Attachment 8). The conservation status of old growth forests on a bioregional basis was sourced from the IVG report of Knight (2012 op. cit.), which automatically assigned Rare or Depleted status where the quantitative thresholds were met and incorporated qualitative determinations where:

- The extent of old growth was 1,000 1,500 ha; or
- The percentage of the forest community extant as old growth was 10 15%.

The data were reviewed to identify old growth forest which are both Rare and Depleted. These data were stored to a separate field in the REM. The data are presented in Attachment 10.

*Output field:* [OG\_statusZ]

# 4.2.2 Type 2 old growth forest of Rare or Depleted Type 1 old growth

*Indicator:* Forest vegetation which is not mapped old growth but contain significant latesuccessional/old-growth structure and functions and whose associated Type 1 old growth is Rare or Depleted.

# HCV criteria: 3.

*Summary:* Type 2 old growth was defined by FT as forests that are not old growth but are:

- Mature forests in PI-type mapping; and
- Have a biophysical naturalness of four or five.

*Data processing:* Type 2 old growth was identified from within the REM from the definitive fields for vegetation structure (field [Vstr\_useZ]) and biophysical naturalness (field [LF\_BN\_useZ]). Rare and Depleted Type 1 old growth was identified from data described in the previous section. Data for the indicator was stored in a separate field ("Y").

# *Output field:* [OGtyp2\_RD]

# 4.2.3 Type 1 old growth reservation index

*Indicator:* An indicator of the relative significance of management for the old growth forests of an ecosystem in a bioregion, based on the extent to which the old growth is reserved relative to it JANIS reservation target and also its JANIS conservation status.

# HCV criteria: 3.

*Summary:* The JANIS criteria used a base target of 60% of the extant are area of old growth forest at the time of assessment, with a target of 100% for Rare and/or Depleted old growth types. Analysis of old growth against JANIS reservation targets was updated for the IVG (Knight, 2012 *op. cit.*), and include a minimum target of the old growth of each forest community of 1,000 ha (if available) in each bioregion.

The IVG analysis is now significantly out of date due to the creation of new reserves under the *Tasmanian Forests Agreement Act 2013*. The methods described in the IVG analysis were used to generate an updated reservation analysis for old growth, including application of the rules for quantitative and qualitative determinations of conservation status. The schema for the index is shown below.

|                           | Reservation shortfall on JANIS target |       |        | target |      |
|---------------------------|---------------------------------------|-------|--------|--------|------|
| JANIS conservation status | 0%                                    | 0-10% | 10-30% | 30-50% | >50% |
| Not threatened            | 0                                     | 1     | 2      | 3      | 3    |
| Rare                      | 0                                     | 1     | 2      | 3      | 3    |
| Depleted                  | 0                                     | 2     | 3      | 4      | 4    |
| Rare and Depleted         | 0                                     | 2     | 3      | 4      | 4    |

*Data processing:* An integrated GIS layer was generated combining current vegetation mapping (APU data), old growth mapping<sup>24</sup> and the Tasmanian reserves spatial layer of DPIPWE (30 June 2013). This layer includes areas of future reserves to be gazetted under the TFA Act, and are treated as reserved areas for the analysis. Data on the extent and reservation of old growth forests was extracted from the integrated layer and added to the spreadsheet used previously for reservation analysis. Decisions flagged by the spreadsheet as needing to be qualitatively reviewed were determined. Data from the analysis was then added to an old growth forests lookup table. A field was also added to the lookup table into which values of the indicators were placed.

A GIS script was then used to transfer values of the index from the old growth forest lookup table to a separate field in the REM containing the old growth forest reservation index. Attachment 10 contains the updated old growth reservation analysis.

Output field: [OG1\_resndx]

# 4.2.4 Type 2 old growth reservation index

*Indicator:* An indicator of the relative importance of Type 2 old growth in maintaining older forest features across the landscape, when Type 1 old growth is not adequately reserved.

# HCV criteria: 3.

*Summary:* Type 2 old growth was considered to be important in maintaining older forest features across the landscape where the Type 1 old growth of the same community was Rare or Depleted (see section 4.2.2) and not reserved to its JANIS target (see section 4.2.3). The index was stratified based on the percentage of the area of Type 2 old growth that would be required to fulfil the reservation target shortfall for Type 1 old growth. The schema used to provide a relative ranking is shown below.

|                          | Type 2 old growth required to meet<br>Type 1 reservation shortfall |       |        |        | meet<br>II |
|--------------------------|--------------------------------------------------------------------|-------|--------|--------|------------|
| Type 1 old growth status | 0%                                                                 | 0-10% | 10-30% | 30-50% | >50%       |
| Not threatened           | 0                                                                  | 0     | 0      | 0      | 0          |
| Rare                     | 0                                                                  | 1     | 2      | 3      | 4          |
| Depleted                 | 0                                                                  | 1     | 2      | 3      | 4          |
| Rare and Depleted        | 0                                                                  | 2     | 2      | 3      | 4          |

*Data processing:* Data on the extent and area in reserves of Type 2 old growth was added to the old growth forests lookup table. These were analysed against any shortfalls in the reservation of Type 1 old growth, where the Type 1 was Rare or Depleted. The percentage of Type 2 that would be needed to meet the Type was shortfall was calculated and stored to a

<sup>&</sup>lt;sup>24</sup> Old growth is part of the setting of vegetation community targets, as in some cases the old growth target can be greater than the community target, so the community target becomes the old growth target.

separate field, from which an additional field was generated containing values for the index. The percentage requirement was set to 0 where the area of type 2 in reserves exceeded the reservation shortfall for type 1 old growth. The analysis also accounted for the area of type 2 old growth being less than the shortfall on type 1 old growth. In these cases the area of type 2 old growth was substituted for the type 1 shortfall, and the percentage requirement of type 2 old growth calculated from this figure. The index values were then transferred to the REM using a GIS script. Data from the analysis are presented in Attachment 10.

*Output field:* [OG2\_resndx]

# 4.3 Ecosystem indicators

# 4.3.1 Rainforest index

Indicator: A binary indicator of the vegetation of an area being mapped as rainforest.

HCV criteria: 3.

*Summary:* Rainforests are mapped in the Tasveg classification as rainforests and related scrubs. The scrub component of the classification shares significant numbers of species with rainforests which have the structural form of forests. All Tasveg rainforests and scrubs ("R" codes) were tagged for the index.

*Data processing:* Vegetation mapped with an "R" code was assigned a value of 1, which was stored in a separate field.

Output field: [Rainft\_ndx]

# 4.3.2 Ecosystem depletion index

*Indicator:* A scale indicating relative depletion of an ecosystem in its bioregion since pre-1750, based on classes in the JANIS criteria (Commonwealth of Australia, 1997<sup>25</sup>).

HCV criteria: 3.

*Summary:* The JANIS criteria provide guidance on the determination of the conservation status of ecosystems based on their extant area and relative loss since 1750. The conservation status categories can be summarised as:

- Endangered depletion approaching 90% or more of pre-1750 extent;
- Vulnerable depletion approaching 70% or more of the pre-1750 extent;
- Rare not significantly depleted but of limited extent; and
- Not threatened.

The categories are not exclusive and both Endangered and Vulnerable ecosystems can also be Rare. The combination of Endangered or Vulnerable with Rare was considered to increase the risk to an ecosystem due to its limited extent. The index is shown below.

<sup>&</sup>lt;sup>25</sup> Commonwealth of Australia (1997). Nationally agreed criteria for the establishment of a comprehensive, adequate & representative reserve system for forest in Australia. A report by the Joint ANZECC/MCFFA National Forest Policy Statement Implementation Sub-committee. Commonwealth of Australia, Canberra.

| JANIS bioregional   | Ecosystem       |
|---------------------|-----------------|
| conservation status | depietion index |
| Not threatened      | 0               |
| Rare                | 0               |
| Vulnerable          | 1               |
| Vulnerable and Rare | 2               |
| Endangered          | 3               |
| Endangered and Rare | 4               |

*Data processing:* Data on the pre-1750 extent and loss of forest vegetation communities was sourced from Knight (2012<sup>26</sup>), which represents the most recent available update of the pre-1750 analysis developed for the RFA (TPLUC, 1996<sup>27</sup>). Data on the pre-1750 extent and loss of non-forest vegetation communities was sourced from CARSAG (2002<sup>28</sup>), which provides data for six of the nine Tasmanian bioregions. In common with the methods used in the CARSAG report, conservation status was automatically assigned where quantitative thresholds were met and qualitatively assigned through consideration of classes proximal to the quantitative thresholds. This involves consideration of the conservation status of communities which are:

- Have an extant area of 1,000–1,500 ha to determine if they may be Rare;
- Have been depleted by 50-70% of their pre-1750 extent, to determine if they may be Vulnerable;
- Have been depleted by 80-90% of their pre-1750 extent to determine if they may be Endangered;
- Listed as threatened under the *Nature Conservation Act 2002*.

The data was also reviewed so that the co-occurrence of Rare with Vulnerable or Endangered was identified and recorded (the previous assessments only identified a single category). Bioregional conservation status for non-forest communities in the remaining three bioregions was determined on a case-by-case basis taking account of the current mapped extent and categories of restriction in the CARSAG report. These communities are generally in bioregions where depletion is likely to have been limited, so is considered to have adequate reliability. Attachment 11 provides a bioregional breakdown of the extent of Tasmanian vegetation communities and their conservation status.

<sup>&</sup>lt;sup>26</sup> Knight, R.I. (2012). Analysis of comprehensiveness of existing conservation reserves & proposed additions to the Tasmanian forest reserves system. Report to the Independent Verification Group for the Tasmanian Forests Intergovernmental Agreement, February 2012. Natural Resource Planning, Hobart.

http://www.environment.gov.au/land/forests/independent-verification/pubs/ivg\_comprehensiveness\_1a.pdf<sup>27</sup> Tasmanian Public Land Use Commission (1996). Tasmanian-Commonwealth Regional Forest Agreement background report part C: Environment & Heritage report volume I. November 1996. Tasmanian Public Land Use Commission, Hobart.

<sup>&</sup>lt;sup>28</sup> Comprehensive, Adequate & Representative Reserve System Scientific Advisory Group (2002). Advice on reservation targets for Tasmanian native non-forest vegetation. 31 July 2002. Comprehensive, Adequate & Representative Reserve System Scientific Advisory Group, Department of Primary Industries, Water & Environment, Hobart.

The data were stored in the vegetation communities lookup table for the REM. A GIS script was used to add the conservation status categories for each community-bioregion combination to the REM layer (field [IBRA\_statZ]) and to record the numeric value of the indicator in a separate field.

*Output field:* [VegDep\_ndx]

# 4.3.3 Ecosystem reservation index

*Indicator:* An indicator of the relative significance of management for an ecosystem in a bioregion, based on the extent to which the ecosystem is reserved relative to it JANIS reservation target and also its JANIS conservation status.

#### HCV criteria: 3.

*Summary:* The JANIS criteria used the percentage of pre-1750 extent of ecosystems as the base target for establishing conservation reserves. These data are available for forest communities but are not complete for non-forest. Analysis of reservation levels for forest and non-forest vegetation communities was therefore undertaken separately. It was considered preferable to use a consistent framework for the non-forest analysis, rather than using the pre-1750 framework where data were available and another where not.

Analysis of forest communities against JANIS reservation targets was updated during the development of the Tasmanian Forests Agreement (Knight, 2012 *op. cit.*) but is now significantly out of date due to the creation of new reserves under the *Tasmanian Forests Agreement Act 2013*. The methods described in the report were used to generate an updated reservation analysis for forest communities, including application of the rules relating to fuzzy bioregions (Attachment 9), quantitative and qualitative determinations of conservation status, and logical consistency rules addressing the nestedness of the JANIS targets framework. The rules for determining reservation targets and addressing nestedness were:

- All communities have a minimum reservation target of 1,000 in each bioregion, if extant;
- If the reservation target for Vulnerable communities is less than 15% of the pre-1750 extent then the target is raised to 15% of the pre-1750 area (or the extant area if less);
- If the reservation target for old growth of the community is a larger area than the target for the community as a whole then the target area for old growth is adopted for the community (which in practice would be implemented by pursuing reservation of old growth); and
- If the extant area falls below the applicable reservation target then the extant area is adopted as the target.
The results of the analysis are presented in Attachment 11. The schema for the index is shown below.

|                           | Reservation shortfall on JANIS target |       |        |        |      |  |  |  |
|---------------------------|---------------------------------------|-------|--------|--------|------|--|--|--|
| JANIS conservation status | 0%                                    | 0-10% | 10-30% | 30-50% | >50% |  |  |  |
| Not threatened            | 0                                     | 1     | 2      | 3      | 3    |  |  |  |
| Vulnerable (and not Rare) | 0                                     | 1     | 2      | 3      | 3    |  |  |  |
| Rare                      | 0                                     | 2     | 3      | 4      | 4    |  |  |  |
| Endangered                | 0                                     | 2     | 3      | 4      | 4    |  |  |  |

For non-forest vegetation updated figures for extent and reservation, taking account of *TFA Act* reserves, was generated. Values for the index were those developed for the vegetation conservation status index (section 3.1.2.2) and are scaled from one to four.

*Data processing:* An integrated GIS layer was generated combining current vegetation mapping (APU data), old growth mapping<sup>29</sup> and the Tasmanian reserves spatial layer of DPIPWE (30 June 2013). This layer includes areas of future reserves to be gazetted under the TFA Act, and are treated as reserved areas for the analysis. Data on the extent and reservation of forest communities was extracted from the integrated layer and added to the spreadsheet used previously for reservation analysis. Decisions flagged by the spreadsheet as needing to be qualitatively reviewed were determined. Data from the analysis was then added to a vegetation lookup table and the values of the index added to a separate field.

Non-forest reservation levels had been previously updated for the native vegetation conservation status index, so required no further processing.

A GIS script was then used to transfer values of the index from either the vegetation lookup table (for forests) or the native vegetation conservation index field (non-forest) to a separate field containing the ecosystem reservation index.

Output field: [Vegres\_ndx]

<sup>&</sup>lt;sup>29</sup> Old growth is part of the setting of vegetation community targets, as in some cases the old growth target can be greater than the community target, so the community target becomes the old growth target.

### 4.3.4 Remnant vegetation index

*Indicator:* A binary index indicating patches of remnant vegetation considered to be in heavily cleared landscape.

HCV criteria: 3.

*Summary:* Native vegetation patch size is stored in the APUs and identifiable from the remnant vegetation analysis in the standard REM (section 3.1.3). Remnants were considered to meet the requirements of the indicator if they:

- Have a High or Very High Immediate Level of Concern for landscape ecological function (see section 3.1.6); or
- Are located on a land system component with >90% clearing bias (see section 3.1.5); or
- Are located in an area where the density of native vegetation is <10% at the one kilometre scale, or less than 30% at the five kilometre scale (see attachment 3 to the REM report, pages 13-14, for a description of this data).

*Data processing:* Data for remnants meeting the criteria for landscape function or clearing bias were identified from within the REM and stored in a separate field ([Remveg\_ndx]). Remnants meeting the criteria for native vegetation density were identified externally from the REM using spatial selection on the APU and native vegetation density layers, before being added to the indicator field in the REM.

*Output field:* [Remveg\_ndx]

Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit: Attachments 1-5, 8-11

**R.I. Knight** 

March 2014

**Report to Forestry Tasmania** 



natural resource planning

#### Suggested citation:

Knight, R.I. (2014). Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit assessment of Forest Stewardship Council certification: Attachments 1-5, 8-11. A report to Forestry Tasmania, March 2014. Natural Resource Planning, Hobart, Tasmania.

Produced by: Natural Resource Planning Pty Ltd ACN: 130 109 250 PO Box 4530 Bathurst Street Hobart, TASMANIA, 7000. Australia. www.naturalresourceplanning.com.au

© Natural Resource Planning Pty Ltd

This work is protected under Australian copyright law. The report may be freely circulated, cited or reproduced only in accordance with the provisions of applicable copyright law.

Commercial use of the contents and format of this report and the intellectual property herein is prohibited except as provided for by the service contract between Natural Resource Planning and Forestry Tasmania. Potential users should contact the company for further information.

*Disclaimer:* Whilst due and reasonable care has been taken in the preparation of this report and the data described herein, NRP does not warrant that it is free of errors or omissions and does not accept responsibility for any cost or inconvenience arising from its use. Use and interpretation of the data is a matter for Forestry Tasmania.



## CONTENTS

| 1   | Attachment 1. Example issue summary from REM strategy review                                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 4   | Attachment 2. Example of REM specifications development process                                                             |
| 6   | Attachment 3. Data sources used in construction of the REM                                                                  |
| 17  | Attachment 4. Summary of scripts controlling REM construction                                                               |
| 29  | Attachment 5. Metadata for the dissolved REM polygon layer                                                                  |
| na  | Attachment 6. Species habitat modelling rules and indicator attributes (In separate document)                               |
| na  | Attachment 7. Modelling rules for species attributed from species-<br>specific habitat parameters<br>(In separate document) |
| 57  | Attachment 8. Vegetation classification of the REM and HCV indicators                                                       |
| 73  | Attachment 9. Vegetation communities 'fuzzy' bioregional boundaries and logical consistency rules                           |
| 101 | Attachment 10. Conservation and reservation status of old growth forests                                                    |
| 110 | Attachment 11. Conservation and reservation status of vegetation communities                                                |

# ATTACHMENT 1. EXAMPLE ISSUE SUMMARY FROM REM STRATEGY REVIEW<sup>1</sup>

#### 4.1.1.8 Issue: Remnant vegetation

#### Summary

Remnant vegetation is defined as islands of native vegetation, below a specified size, that are surrounded by cleared land.

Remnant vegetation has been identified as being of critical importance to landscape function and biodiversity conservation within the region and throughout eastern and southern Australia. Remnant vegetation is directly related to the issues of native vegetation clearing bias, condition, tree decline, riparian vegetation, connectivity, salinity and erosion.

The role and management of remnant vegetation has been subject to substantial research (see, for example, Saunders *et al.*  $1987^2$ ). This research has produced some interesting results that indicate the complexity of the subject. Examples include:

- Characteristics of tree hollows vary between species, and hence have different value for hollow dwelling fauna in remnants (Bennett *et al.* 1994<sup>3</sup>).
- Lindenmayer *et al.* (1999<sup>4</sup>) found no significant differences in mammal species presence and abundance between remnants and large continuous forest areas surrounded by softwood plantations.
- The importance of remnant size varies among species and taxonomic groups, with size (but not isolation) having been found consistently important for small mammals (Holland and Bennett 2009<sup>5</sup>) but not for threatened flora species (Kirkpatrick and Gilfedder 1995).
- Edge effects in small remnants may lead to loss of condition or of entire remnants through landuse effects such as grazing-induced increases in soil nutrients, tree decline and weed invasion (Close *et al.* 2008<sup>6</sup>).
- The geometry of remnant patches is important, particularly lobes which enhance maintenance and reconstruction of ecosystems significantly relative to the proportion

<sup>&</sup>lt;sup>1</sup> From Knight & Cullen (2009), op. cit. pp42-44.

<sup>&</sup>lt;sup>2</sup> Saunders, D.A., Arnold, G.W., Burbidge, A.A. & Hopkins, A.J.M. (Eds). Nature conservation: the role of remnants of native vegetation. Surrey Beatty & Sons.

<sup>&</sup>lt;sup>3</sup> Bennett, A.F., Lumsden, L.F. & Nicholls, A.O. (1994). Tree hollows as a resource for wildlife in remnant woodlands: spatial & temporal patterns across the northern plains of Victoria, Australia. Pacific Conservation Biology, 1(3):222-235.

<sup>&</sup>lt;sup>4</sup> Lindenmayer, D.B., Cunningham, R.B. & Pope, M.L. (1999). A large-scale 'experiment' to examine the effects of landscape context & habitat fragmentation on mammals. Biological Conservation, 88:387-403.

<sup>&</sup>lt;sup>5</sup> Holland, & Bennett, A.F. (2009). Differing responses to landscape change: implications for small mammal assemblages in forest fragments. Biodiversity & Conservation, 18(11):2997-3016.

<sup>&</sup>lt;sup>6</sup> Close, D.C., Davidson, N.J. & Watson, T. (2008). Health of remnant woodlands in fragments under distinct grazing regimes. Biological Conservation, 141(9):2395-2402.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

of remnant size they represent (Harwood and Mac Nally 2005<sup>7</sup>). An exaggerated form of lobes in remnants are linear corridors.

Although these findings point to divergent needs in the management of remnant vegetation, they do not detract from their potential importance in landscape function and the need for them to be managed appropriately, particularly through consideration of landscape context, permeability and the matrix in which they occur.

Remnant vegetation can also be important in the economic performance of farm production environments. Walpole (1999) found that the value of pasture output on a farm was greatest when farm tree cover was 34% but did not increase beyond this level, possibly due to the competitive influence of trees exceeding the stimulatory effect on pasture production.<sup>8</sup>

|                       | Overarching Document |     |     |     |     |      |                                                                                                                                                    |
|-----------------------|----------------------|-----|-----|-----|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Issues                | Nat.                 | DEW | FPC | NRM | NRM | Tas. | Other Documents                                                                                                                                    |
|                       | Cons.                |     |     | Nth | Sth | Tog. |                                                                                                                                                    |
| Remnant<br>vegetation | Y                    |     | Y   | Y   |     |      | <ul> <li>National Biodiversity<br/>Strategy</li> <li>Tasmanian Salinity<br/>Strategy</li> <li>Tasmanian Threatened<br/>Species Strategy</li> </ul> |

Strategies

The Tasmanian Nature Conservation Strategy's Recommended Action 31 is to amend the Forest Practices Act 1985 to increase protection for special values, including identifying and protecting remnants as a 'special value' and classifying them in forestry planning as 'vulnerable land' (p27). The Government states that the Forest Practices System already recognises remnants through the special values evaluation process and that further protection is afforded under the Threatened Species Management Protocols and the new Australian Forestry Standard provides for best practice on these issues.

For areas where native forests occur mainly as remnants, the Forest Practices Code requires consideration be given to the retention of remnants and widening and linking habitat strips (D3).

The NRM North Strategy's recommended Action MAB1 addresses this issue as of lower priority through developing strategies to facilitate the reservation of high priority remnants of

<sup>&</sup>lt;sup>7</sup> Harwood, W. & MacNally, R. (2005). Geometry of large woodland remnants & its influence on avifaunal distributions. Landscape Ecology, 20(4):401-416.

<sup>&</sup>lt;sup>8</sup> Walpole, S.C. (1999). Assessment of the economic & ecological impacts of remnant vegetation on pasture productivity. Pacific Conservation Biology, 5:28-35.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

native vegetation and the inclusion of conservation provisions within all levels of government planning.

The National Biodiversity Strategy's Action 1.2.2 (d) (Bioregional planning) includes improving protection of and management for biological diversity in closely settled environments and the coastal zone, with particular attention being paid to remnant areas (p14). Action 1.3.1 (Integrated techniques) involves improving integrated land management techniques, with emphasis on research into practical, cost-effective methods for the conservation of natural habitat, including remnant vegetation (p14). Action 1.5.1 (a) (Incentives for conservation) includes ensuring adequate, efficient and cost effective incentives exist to conserve biological diversity, with priority given, *inter alia*, to remnant vegetation (p17). Action 2.2.3 (Improved management) encourages landholders, other land managers, governments and industry organisations to protect biological diversity by identifying and managing critical biological diversity areas, including habitat remnants on farmlands (p27). Action 2.5.2 (e) (Legislative and policy framework) is to protect aquatic ecosystems by introducing effective legislative and policy frameworks incorporating rehabilitation of wetlands and rivers as links between areas of remnant vegetation (p31). Action 3.2.5 (Voluntary protection) is to encourage voluntary management of native vegetation remnants (p37). Action 5.1.2 (Public involvement and participation) is to facilitate greater public involvement in conserving biological diversity, including remnants and particularly activities involving survey, revegetation and rehabilitation. (p50). Action 7.1.1(l) (Priorities and time frames) states that by the year 2000 Australia will have arrested and reversed the decline of remnant native vegetation (p55).

The Tasmanian Salinity Strategy states that salinity can pose a threat to some vegetation communities and habitats, with those considered most at risk found on valley floors and lower slopes, including native grassland remnants (p9). These types of communities have some of the lowest levels of reservation in the State.

The Tasmanian Threatened Species Strategy includes an Action to control clearance of native vegetation, including remnants (p10), and a number of incidental references to importance of remnant vegetation to threatened species.

# ATTACHMENT 2. EXAMPLE OF REM SPECIFICATIONS DEVELOPMENT PROCESS<sup>9</sup>

### 2.2.1.8 Issue: Remnant vegetation

*Issue Summary:* In heavily cleared landscapes, patches of remnant vegetation can contribute significantly to the maintenance of ecosystem function, while their loss and decline is a major factor in ecosystem collapse. Their smaller size makes them vulnerable to ongoing degradation through various combinations of anthropogenic and natural ecological processes. The nature of ecological processes in remnants varies among species, with small remnants capable of maintaining some species but not others.

*Indicator:* The indicator for remnant vegetation is the contiguous extent of each patch of native vegetation communities, stratified into size classes. A size threshold of 200ha for remnants is based on Kirkpatrick *et al.*  $(2007^{10})$ , who found remnants of 2-200ha retain much higher conservation values (for threatened flora) in their centres than on their edges. The emphasis of the indicator is on ecological function rather than on rarer values that have become so as a result of ecological change.

*Assumptions:* It is assumed that patches of remnant vegetation above a size threshold can be managed to improve their contribution to ecological function. It is also assumed that this can be delivered on a case-by-case basis, though the role of other factors, particularly connectivity, is acknowledged.

*Data processing:* GIS methods were applied to the integrated vegetation layer for the project to generate a unique ID and area for each patch of contiguous native vegetation in Tasmania. A histogram of patch sizes in the range of 0-200ha (n=29,173 of 29,432 patches) was generated and examined but no disjunction in patch size distribution was evident.

| Native vegetation<br>patch size (ha) | Concern –<br>Immediate | Concern –<br>Potential | Opportunity |
|--------------------------------------|------------------------|------------------------|-------------|
| Not native vegetation                | L                      | L                      | na          |
| <2ha                                 | М                      | L                      | L           |
| 2-20ha                               | VH                     | VH                     | Н           |
| 20-200ha                             | Н                      | VH                     | М           |
| >200ha                               | L                      | М                      | L           |

<sup>&</sup>lt;sup>9</sup> From Knight and Cullen (2010) *op. cit.* pp13-14, modified since publication with addition of non-native vegetation to prioritisation schema.

<sup>&</sup>lt;sup>10</sup> Kirkpatrick, J.B., Gilfedder, L., Mendel, L. & Jenkin, E. (2007). Run country on the run. pp161-181 in Kirkpatrick, J. & Bridle, K. (Eds.). People, sheep & nature conservation: the Tasmanian experience. CSIRO Publishing, Melbourne.

*Notes:* The ranges of patch size classes within the indicator reflect first the range of 2-200ha for remnants nominated by Kirkpatrick *et al.*  $(2007^{11})$ , with patches >2ha generally retaining much greater conservation values than smaller patches. Remnants <2 ha are considered to be of little importance to landscape function, while those >200 ha are subject to the processes which affect remnants at a significantly diminished intensity and effect. The split in the middle size class in the indicator is based on the RFA assessment of remnant vegetation, which considered patches <20ha, though potentially locally important, as below the threshold for importance in maintaining existing processes or natural systems at the regional scale (Tasmanian Public Land Use Commission 1997<sup>12</sup>). The assessment of Opportunity reflects the difficulty in increasing vegetation patch size for the remnant size classes where it may be important.

<sup>&</sup>lt;sup>11</sup> Kirkpatrick, J.B., Gilfedder, L., Mendel, L. & Jenkin, E. (2007). Run country on the run. pp161-181 in Kirkpatrick, J. & Bridle, K. (Eds.). People, sheep & nature conservation: the Tasmanian experience. CSIRO Publishing, Melbourne.

<sup>&</sup>lt;sup>12</sup> Tasmanian Public Land Use Commission (1997). Tasmania-Commonwealth Regional Forest Agreement background report part H: National Estate report. February 1997, Tasmanian Public Land Use Commission, Hobart.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## ATTACHMENT 3. DATA SOURCES USED IN CONSTRUCTION OF THE REM

\* Custom input source used or developed specifically for this REM

| Data source      | Brief title          | Summary                                 | REM issues/    | Custodian | Notes                            |
|------------------|----------------------|-----------------------------------------|----------------|-----------|----------------------------------|
|                  |                      |                                         | uses           |           |                                  |
| APU7_current.shp | Atomic Planning      | APUs are an integrated layer of         | Threatened     | NRP       | Layer includes standard inputs   |
|                  | Units, version 724,  | vegetation attributes                   | species;       |           | plus field mapping collected     |
|                  | integrated           | constructed on atomic                   | Other priority |           | from NRP and other projects.     |
|                  | vegetation and       | principles, i.e. each polygon           | species;       |           |                                  |
|                  | biodiversity polygon | differs from its neighbours on          | Hollow         |           | Vegetation data for the current  |
|                  | layer (n = 617,333)  | at least on input attribute.            | dwelling       |           | project were updated by          |
|                  |                      | Data stored in the APUs that is         | species        |           | incorporation of FT plantations, |
|                  |                      | used in the REM is:                     | habitat;       |           | old growth and disturbance       |
|                  |                      | <ul> <li>Desktop (Tasveg 2.0</li> </ul> | Native         |           | data (see below), with           |
|                  |                      | subject to logical                      | vegetation;    |           | corrections for logical          |
|                  |                      | consistency                             | Remnant        |           | consistency.                     |
|                  |                      | corrections) and field                  | vegetation;    |           |                                  |
|                  |                      | (where available)                       | Connectivity;  |           |                                  |
|                  |                      | vegetation mapping;                     | Biophysical    |           |                                  |
|                  |                      | <ul> <li>IBRA bioregions,</li> </ul>    | naturalness    |           |                                  |
|                  |                      | including 'fuzzy'                       |                |           |                                  |
|                  |                      | boundaries                              |                |           |                                  |
|                  |                      | allocations <sup>13</sup> ;             |                |           |                                  |
|                  |                      | RFA and field (where                    |                |           |                                  |
|                  |                      | available) old growth                   |                |           |                                  |
|                  |                      | mapping;                                |                |           |                                  |

<sup>13</sup> See Knight (2012) op. cit.

| Data source       | Brief title                                                    | Summary                                                                                                                                                                                                                                                                                                                | REM issues/<br>uses                                                               | Custodian | Notes                                                                                                                                                                                                  |
|-------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                | <ul> <li>RFA and field (where available) biophysical naturalness mapping;</li> <li>Eucalypt structural dominance from RFA forest resource types map (entered on a project specific basis) and field mapping (where available);</li> <li>Selected attribution of polygons of species habitat and occurrence.</li> </ul> |                                                                                   |           |                                                                                                                                                                                                        |
| CFEV_RWWESK_4.shp | Integrated polygon<br>layer of CFEV<br>themes<br>(n = 576,994) | Layer is an APU-styled<br>integration of the CFEV themes<br>for Waterbodies, Wetlands,<br>Estuaries, Saltmarsh and Karst,<br>with the Rivers theme<br>expressed as the CFEV river<br>section catchments.                                                                                                               | Riparian<br>vegetation;<br>Riparian<br>zones;<br>Threatened<br>species<br>models; | NRP       | The standard REM is also<br>attributed with CFEV<br>Conservation Management<br>Priority classes. The data layer<br>provides full access to the<br>entire set of CFEV databases<br>from within the REM. |

| Data source                    | Brief title                                                       | Summary                                                                                                                                                           | REM issues/<br>uses                      | Custodian | Notes                                                                                                                          |
|--------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| CFEVriversectioncatchments.shp | Polygon layer for<br>each CFEV river<br>section (n =<br>476,857). |                                                                                                                                                                   | Threatened<br>species<br>models          | DPIPWE    |                                                                                                                                |
| CFEVsubcatchments.shp          | Polygon layer of<br>CFEV<br>subcatchments (n =<br>1,160).         |                                                                                                                                                                   | Threatened<br>species<br>models          | DPIPWE    |                                                                                                                                |
| Disturbance13.shp *            | Polygon layer of<br>forest disturbance<br>classes (n = 22,513)    | Layer is a derivative of FT PI-<br>type mapping, with disturbance<br>coded from 0 (no disturbance)<br>to 6 (all native vegetation<br>removed).                    | Biophysical<br>naturalness               | FT        | Data has been used to<br>generate an updated Statewide<br>layer of biophysical<br>naturalness.                                 |
| Forstruct1_attrib.shp          | Reconstruction of<br>RFA Forest Resource<br>Types map             | Map is a reconstruction of the<br>RFA map of Forest Resource<br>Types, which depicts classes of<br>eucalypt dominance, and<br>various non-eucalypt<br>vegetation. | Hollow<br>dwelling<br>species<br>habitat | na        | These data are only used<br>where eucalypt forest is<br>mapped but there are no other<br>data sources on eucalypt<br>dominance |

| Data source               | Brief title                                                                 | Summary                                                                                                                                                                                                                                                               | REM issues/                                   | Custodian | Notes                                                                                                                                                                                                                                             |
|---------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                             |                                                                                                                                                                                                                                                                       | uses                                          |           |                                                                                                                                                                                                                                                   |
| FT-REM_wcourse_use.shp *  | 1:25k watercourses<br>for use in the REM<br>(n = 858,379)                   | Layer was developed by FT<br>from 1:25k LIST watercourses<br>but modified to include<br>attribution of Forest Practices<br>Authority Stream classes and to<br>correct location of streams<br>where identified from field<br>sources (e.g. Forest Practices<br>Plans). | Riparian<br>vegetation;<br>Species<br>models. | FT        | The LIST watercourses used to<br>generate the layer predated<br>the complete Statewide<br>coverage.<br>The data were modified to<br>include current LIST coverage<br>where not in original, and<br>attributed to match the FPC<br>classification. |
| GFC_pred_hab_singpt.shp * | Species habitat<br>model of the Giant<br>Freshwater Crayfish<br>(n = 9,696) | Provides categories of habitat<br>suitability based on the model<br>of Davies <i>et al.</i> (2007 <sup>14</sup> ) and the<br>FPA Fauna Technical Note 3 <sup>15</sup> .                                                                                               | Threatened<br>species<br>models               | FPA       | This model was further refined to derive REM habitat                                                                                                                                                                                              |

 <sup>&</sup>lt;sup>14</sup> Davies, P.E., Munks, S.A., Cook, L.J.S., von Minden, P. & Wilson, D. (2007). Mapping suitability of habitat for the Giant Freshwater Crayfish Astacopsis gouldii: background document to GIS mapping layer. Scientific Report 4, Forest Practices Authority, Hobart.
 <sup>15</sup> Forest Practices Authority (2013). Assessing juvenile Giant Freshwater Crayfish habitat in Class 4 streams. Draft Fauna Technical Report No. 3 (v0.3, June 2013), Forest

Practices Authority, Hobart.

| Data source                   | Brief title                                                                                                                                  | Summary                                                                                                                                                                                                    | REM issues/                                            | Custodian | Notes                                                                                                                                                                                                                        |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                                                              |                                                                                                                                                                                                            | uses                                                   |           |                                                                                                                                                                                                                              |
| Hollowdensity_1km-current.shp | Percentage of land<br>in surrounding 1km<br>with FPA predicted<br>mature eucalypt<br>habitat classes of<br>Medium and High (n<br>= 248,871). | Data is presented in 20<br>percentile bands (i.e. 0-5, 5-10,<br>etc) and water represented as a<br>null value (-99).                                                                                       | Information                                            | FPA       | The data is included as<br>standard reference in the REM<br>but does not form part of the<br>REM structure.<br>Name has been changed from<br>original to provide for capacity<br>to seamlessly switch to future<br>versions. |
| Hollowdensity_5km-current.shp | Percentage of land<br>in surrounding 5km<br>with FPA predicted<br>mature eucalypt<br>habitat classes of<br>Medium and High (n<br>= 11,634).  | Data is presented in 20<br>percentile bands (i.e. 0-5, 5-10,<br>etc) and water represented as a<br>null value (-99)                                                                                        | Information                                            | FPA       | The data is included as<br>standard reference in the REM<br>but does not form part of the<br>REM structure.<br>Name has been changed from<br>original to provide for capacity<br>to seamlessly switch to future<br>versions. |
| Hydarea.shp                   | LIST polygon layer of<br>hydrologic areas (n<br>= 141,958).                                                                                  | Polygons of hydrologic features<br>across Tasmania.<br>Those of relevance to the REM<br>are estuaries, floodplains, tidal<br>zones, waterbodies,<br>watercourses (2D, i.e. larger<br>rivers) and wetlands. | Riparian<br>zones;<br>Threatened<br>species<br>models. | LIST      |                                                                                                                                                                                                                              |

10

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit – March 2014.

© Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| Data source               | Brief title                                                                                             | Summary                                                                                                                                                                                                                                                    | REM issues/                                   | Custodian | Notes                                                                                                                                                                                                                                                                                                     |
|---------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydline.shp               | LIST polylines layer<br>of linear hydrologic<br>features (n =<br>994,703).                              | Watercourses are used in the REM                                                                                                                                                                                                                           | na                                            | LIST      | Data are generally superseded<br>by FT-REM_wcourse_use.shp,<br>which includes some features<br>from this layer.                                                                                                                                                                                           |
| Lcomps+ten13-1.shp        | Integrated layer of<br>automated land<br>system components<br>and 2013 Tas<br>reserve estate<br>layers. | Combines the Statewide<br>mapping of land system<br>components with current<br>reserved areas.                                                                                                                                                             | Threatened<br>species<br>reservation<br>index | NRP       | Data generated for this version of the REM.                                                                                                                                                                                                                                                               |
| Lcomps_master_current.shp | Desktop and field<br>based mapping of<br>land system<br>components (n =<br>169,012)                     | Layer is a partial coverage of<br>Tasmanian land system<br>components, delineated using<br>a range of both desktop and<br>field methods. Attributes<br>follow the land components<br>described in Richley (1978 <sup>16</sup> )<br>and subsequent reports. | Clearing bias                                 | NRP       | The data covers most of the<br>dry land agricultural areas of<br>Tasmania, plus limited other<br>areas.<br>Only relatively small areas<br>extend into the HAZ.<br>The data are used in<br>combination with the<br>automated land system<br>components to derive Clearing<br>Bias where both layers occur. |

<sup>16</sup> Richley, L.R. (1978). Land systems of Tasmania region 3. Tasmanian Department of Agriculture, Hobart.

| Data source         | Brief title                                                             | Summary                                                                                                                                                    | REM issues/<br>uses                                | Custodian | Notes                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LGA_current.shp     | Polygon layer of<br>Tasmanian local<br>government areas<br>(n = 1,081). | Layer codes all Tasmanian local<br>government areas (n = 29)                                                                                               | Information<br>only                                | LIST      |                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lsys_LCTPU29-1.shp  | Automated land<br>system components<br>of Tasmania (n =<br>345,003)     | Layer of synthetic land system<br>components of Tasmania,<br>derived from land systems<br>mapping and analysis of<br>Statewide digital elevation<br>model. | Clearing bias;<br>Threatened<br>species<br>models. | NRP       | <ul> <li>Layer generates a catena of up<br/>to 6 landforms within any land<br/>system:</li> <li>Elevated plains;</li> <li>Crests, ridges and upper<br/>slopes;</li> <li>Steep mid slopes</li> <li>Gentle lower slopes;</li> <li>Steep lower slopes; and</li> <li>Lower plains.</li> <li>Not all landforms are<br/>represented in each land<br/>system, as this is a function of<br/>the topography.</li> </ul> |
| Lsys_merged_GDA.shp | Land system<br>polygons coverage<br>of Tasmania (n =<br>2,426).         | Layer is a GIS representation of<br>land systems mapped in<br>reports by Richley (1978 <sup>17</sup> ) and<br>subsequent reports.                          | Threatened<br>species<br>models                    | DPIPWE    |                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>17</sup> op. cit.

12 or Forestry Tasmani

| Data source                        | Brief title                                                              | Summary                                                                                                                                                                         | REM issues/                              | Custodian | Notes                                                                                                                                                                                                                                                                                                    |
|------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                          |                                                                                                                                                                                 | uses                                     |           |                                                                                                                                                                                                                                                                                                          |
| Mathab_current.shp                 | Predicted mature<br>eucalypt habitat<br>map of Tasmania (n<br>= 392,311) | Data is derived from processing<br>of PI-type mapping to produce<br>classes of Low, Medium, High<br>and Negligible mature eucalypt<br>abundance (see Koch 2011 <sup>18</sup> ). | Hollow<br>dwelling<br>species<br>habitat | FPA       | The FPA layer has been<br>renamed so that updates with<br>different names can be used<br>automatically.<br>Version used in REM was May<br>2013.                                                                                                                                                          |
| Natveg_density_1km-<br>current.shp | Density of native<br>vegetation in<br>surrounding 1km (n<br>= 51,038).   | Polygon layer of native<br>vegetation density in 20<br>percentile bands (0-5, 5-10,<br>etc) and water (-99)                                                                     | Remnant<br>vegetation<br>index           | FPA       | The data are one of the inputs<br>to the mature habitat density<br>layers.<br>The data is a standard<br>information component of the<br>REM but is not part of the REM<br>indicators system.<br>It has been used here as one<br>criteria for the HCV remnant<br>vegetation indicator (see<br>Section 3). |

<sup>&</sup>lt;sup>18</sup> Koch, A. (2011). Explanatory notes on the mapping of areas that potentially contain mature forest characteristics (the 'mature habitat availability map'). Fauna Technical Note 2, Forest Practices Authority, Hobart. http://www.fpa.tas.gov.au/\_\_\_data/assets/pdf\_file/0019/68203/Fauna\_Tech\_Note\_2\_Mature\_habitat\_availability\_map.pdf

| Data source                        | Brief title                                                            | Summary                                                                                                     | REM issues/                    | Custodian                                            | Notes                                                                                                                                                                                                                                                                                                    |
|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                        |                                                                                                             | uses                           |                                                      |                                                                                                                                                                                                                                                                                                          |
| Natveg_density_5km-<br>current.shp | Density of native<br>vegetation in<br>surrounding 1km (n<br>= 30,027). | Polygon layer of native<br>vegetation density in 20<br>percentile bands (0-5, 5-10,<br>etc) and water (-99) | Remnant<br>vegetation<br>index | FPA                                                  | The data are one of the inputs<br>to the mature habitat density<br>layers.<br>The data is a standard<br>information component of the<br>REM but is not part of the REM<br>indicators system.<br>It has been used here as one<br>criteria for the HCV remnant<br>vegetation indicator (see<br>Section 3). |
| NVA_REMuse_current.shp             | Subset of NVA<br>records used for<br>REM species<br>modelling.         | Layer includes all NVA records<br>of species modelled as part of<br>the REM.                                | Priority<br>species            | Developed<br>by NRP<br>using data<br>from<br>DPIPWE. | Data used for constructing the<br>REM were current as at 7<br>November 2014.                                                                                                                                                                                                                             |

| Data source                  | Brief title                                                                   | Summary                                                                                                                                                                                                                                                    | REM issues/                                                                                                     | Custodian | Notes                                                                                                                                                                                                                    |
|------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oldgrowth13.shp *            | Old growth map of<br>Tasmania as at 2013<br>(n = 13,734).                     | Layer is RFA old growth layer<br>updated by FT to reflect<br>changes due to harvesting.                                                                                                                                                                    | Uses<br>Old growth<br>forests;<br>Hollow<br>dwelling<br>species<br>habitat;<br>Threatened<br>species<br>models. | FT        | Attribution of old growth in the<br>REM is controlled by logical<br>consistency rules.<br>These rules address different<br>mapping inputs and linework<br>(e.g. Tasveg non-forest<br>mapped in the old growth<br>layer). |
| PI_data_species_modelT.shp * | PI-type data for use<br>in generating REM<br>habitat models (n =<br>146,469). | <ul> <li>Data is an extract of FT's PI-<br/>type mapping, with codes for:</li> <li>Mature eucalypt crown<br/>density;</li> <li>Rainforest;</li> <li>Regrowth crown density;<br/>and</li> <li>Eucalypt mature/regrowth<br/>structural dominance.</li> </ul> | Hollow<br>dwelling<br>species<br>habitat;<br>Threatened<br>species<br>models.                                   | FT        |                                                                                                                                                                                                                          |

| Data source             | Brief title                                                                          | Summary                                                                                                                | REM issues/                     | Custodian                      | Notes                                                                                                                                                                                                                                                      |
|-------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                      |                                                                                                                        | uses                            |                                |                                                                                                                                                                                                                                                            |
| Spp_special_pgons-1.shp | Species range and<br>habitat polygons for<br>use in REM habitat<br>models (n = 104). | Polygons are drawn from a<br>range of sources, so that only<br>that which is used in the<br>current model is included. | Threatened<br>species<br>models | DPIPWE<br>NRP<br>FPA<br>Others | Majority of polygons are<br>sources from DPIPWE mapping.<br>Some polygons are actual<br>species models from studies<br>(e.g. Masked Owl, Simsons Stag<br>Beetle) or have been<br>developed or refined<br>specifically for the REM (e.g.<br>Swan Galaxias). |

## ATTACHMENT 4. SUMMARY OF SCRIPTS CONTROLLING REM CONSTRUCTION

| Script name                                                      | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Notes                                                                                                                                                                         |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Add REM fields<br>to points layer                             | Adds pre-defined fields and field characteristics (field type, length) to the initial points layer.                                                                                                                                                                                                                                                                                                                                                                                                                                               | There are approximately 130 fields involved in the construction of the REM. The script adds them in a single sequence and controls field sizes to limit size of the database. |
| 2. Populate points<br>layer with standard<br>spatial data inputs | <ul> <li>Adds data from the following layers:</li> <li>APU7_current.shp;</li> <li>CFEV_RWWESK_4.shp;</li> <li>Lcomps_master_current.shp;</li> <li>Lsys+LCTPI29-1.shp;</li> <li>Forstruct1_attrib.shp;</li> <li>Mathab_current.shp;</li> <li>FT-REm_wcourse_use.shp;</li> <li>Hydarea.shp;</li> <li>LGA_current.shp;</li> <li>Hollowdensity_1km-current.shp;</li> <li>Hollowdensity_5km-current.shp;</li> <li>Natveg_density_1km-current.shp;</li> <li>Disturbanc13.shp;</li> <li>Oldgrowth13.shp;</li> <li>PI_data_species_modelt.shp.</li> </ul> | Content of layers is described in Attachment 3.<br>Data added under this script is either through<br>spatial joins or theme-on-theme selection<br>routines.                   |

| Script name                                      | Summary                                                                                                                                                                                                                                                                                                                   | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3a. Update native<br>riparian vegetation<br>data | Recalculate the percentage of native riparian vegetation in each CFEV river section catchment.                                                                                                                                                                                                                            | Data on native riparian vegetation in CFEV is out<br>of date.<br>The recalculation uses the most current data<br>available.                                                                                                                                                                                                                                                                                                                                                    |
| 3b. Update derived<br>input fields               | Updates fields in the REM that are definitive fields for generating REM<br>indicators, but are themselves derived from rules applied to the primary inputs.<br>Includes data hierarchy rules to 'prefer' data of higher reliability, including<br>testing where both field and desktop data exist for the same attribute. | <ul> <li>Fields derived using the script are:</li> <li>Vegetation community;</li> <li>REM vegetation community (some Tasveg communities are combined in the REM);</li> <li>Vegetation type (cleared, native, induced, water, rock/sand/mud)'</li> <li>Old growth forest;</li> <li>Vegetation community / IBRA bioregion combination;</li> <li>Biophysical naturalness;</li> <li>Eucalypt mature/regrowth dominance;</li> <li>Percentage native riparian vegetation.</li> </ul> |

| Script name                                                        | Summary                                                                                                                                                                                                                                                                 | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4a. Populate REM<br>with point-based<br>priority species<br>models | Runs the default point based models to attribute the REM with species data<br>based on known locations recorded in the NVA.<br>Applies to all REM priority species unless excluded to be attributed using REM<br>habitat-based models only.                             | <ul> <li>Each species is modelled on:</li> <li>The accuracy of an NVA record needed to trigger the model;</li> <li>The distance from an NVA record to be included in the model;</li> <li>Whether the species is only modelled in riparian zones or native vegetation;</li> <li>Whether the species can be modelled in plantations (raptor nest zones only) or water (mostly fish);</li> <li>The earliest year of a record that can be included in the model; and</li> <li>For poorly reserved, non-threatened flora species, the IBRA regions in which they will be assigned as poorly reserved.</li> </ul> |
| 4b. Remove a<br>priority species<br>from the REM                   | Removes the code of a species identified either as not a priority species (e.g. a<br>delisted species) or one for which a revised model is required.<br>Also updates counts of the number of species and the highest species status<br>assigned to affected REM points. | Multiple species are attributed to REM points.<br>The number of species and the highest species<br>status (e.g. endangered, vulnerable, rare) affect<br>indicators in which species are considered.<br>Script corrects the species input to these<br>indicators on a species-by-species basis (i.e. the<br>user enters the species code to remove).<br>Scripts 5, 6 and 7 are likely to need to be rerun<br>when a species is removed.                                                                                                                                                                      |

| Script name                                         | Summary                                                                                                                    | Notes                                                                                                                                                                                 |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4c. Check REM                                       | This is a control script to test whether species codes in the REM (typically a 4-7                                         | As species data in the REM change, species names                                                                                                                                      |
| species rules table                                 | letter string) are confounded by having part of the code as the unique code of                                             | and codes may also be altered. These are done                                                                                                                                         |
| for duplicates                                      | another species.                                                                                                           | manually.                                                                                                                                                                             |
|                                                     |                                                                                                                            | This script ensures that any single character string<br>forming a species code is tested against all other<br>codes to prevent misattribution of species in the<br>modelling process. |
| 4d. Substitute<br>species codes<br>where confounded | Script follows from 4c and attributes the REM with species codes that have changed in order to be unique for each species. |                                                                                                                                                                                       |

| Script name                                                            | Summary                                                                                                                                                                                                               | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Script name<br>5a. Populate REM<br>with bird species<br>habitat models | Summary<br>Generates REM habitat for bird species identified as needing habitat-based<br>models rather than defining habitat based on NVA records alone.<br>Each species has modelling rules specific to the species. | <ul> <li>Notes</li> <li>Species modelled in this REM script are: <ul> <li>Swift Parrot (<i>Lathamus discolor</i>) foraging habitat;</li> <li>Swift Parrot (<i>L. discolor</i>) nesting habitat;</li> <li>Orange- bellied Parrot (<i>Neophema chrysogaster</i>) foraging habitat;</li> <li>Orange- bellied Parrot (<i>N. chrysogaster</i>) breeding habitat;</li> <li>Masked Owl (<i>Tyto novaehollandiae</i> subsp. <i>castanops</i>) breeding habitat;</li> <li>Grey Goshawk (<i>Accipiter novaehollandiae</i>) foraging habitat;</li> <li>King Island Green Rosella (<i>Platycercus caledonicus brownii</i>);</li> <li>Azure Kingfisher (<i>Ceyx azurea</i>);</li> <li>Forty- spotted Pardalote (<i>Pardalotus quadragintus</i>) mapped colonies;</li> </ul> </li> </ul> |
|                                                                        |                                                                                                                                                                                                                       | <i>quuuruymus)</i> nabitat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Script name                                                    | Summary                                                                                                                                                                                                                                                                                                  | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5b. Populate REM<br>with fish species<br>habitat models        | Generates REM habitat for species of fish identified as needing habitat-based<br>models rather than defining habitat based on NVA records alone.<br>Each species has modelling rules specific to the species, except for Arthurs<br>Paragalaxias and the Saddled Galaxias which occupy the same habitat. | <ul> <li>Species modelled in this REM script are:</li> <li>Swan Galaxias (<i>Galaxias fontanus</i>);</li> <li>Shannon Galaxias (<i>Paragalaxias dissimilis</i>);</li> <li>Great Lake Galaxias (<i>P. eleotroides</i>);</li> <li>Golden Galaxias (<i>G. auratus</i>);</li> <li>Clarence Galaxias (<i>G. johnstoni</i>);</li> <li>Australian Grayling (<i>Prototroctes maraena</i>);</li> <li>Arthurs Paragalaxias (<i>P. mesotes</i>);</li> <li>Saddled Galaxias (<i>G. tanycephalus</i>); and</li> <li>Dwarf Galaxias (<i>Galaxiella pusilla</i>).</li> </ul> |
| 5c. Populate REM<br>with frog and<br>reptile species<br>models | Generates REM habitat for species of frog and reptile species identified as<br>needing habitat-based models rather than defining habitat based on NVA<br>records alone.<br>Each species has modelling rules specific to the species.                                                                     | <ul> <li>Species modelled in this REM script are:</li> <li>Tussock Skink (<i>Pseudomeia pagenstecheri</i>);</li> <li>Striped Marsh Frog (<i>Limnodynastes peroni</i>);</li> <li>Green and Gold Frog (<i>Litoria raniformis</i>);<br/>and</li> <li>Glossy Grass Skink (<i>P. rawlinsoni</i>).</li> </ul>                                                                                                                                                                                                                                                       |

| Script name Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Notes                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>5d. Hydrobiid snail<br/>models</li> <li>Generates REM habitat for threatened hydrobiid snail species. Species are<br/>classified into 6 groups, each with a modelling process that applies to each<br/>species in the group. Groups match those in the FPA/DPIPWE habitat<br/>descriptions prepared for the review of the Threatened Fauna Advisor<sup>19</sup>.</li> <li>Group 2 - B. an<br/>B. fromensis, a</li> <li>Group 3 - B. an<br/>Phrantela anna<br/>marginata;</li> <li>Group 4 - B. bn<br/>salmonis;</li> <li>Group 5 - B. be<br/>franklandensis<br/>protuberata, B<br/>and</li> <li>Group 6 - B. ft<br/>tasmanica, B. i<br/>pupiformis.</li> </ul> | n this script are:<br>domeia kershawi, B. krybetes<br>tonensis;<br>verni, B. camensis, B. capensis,<br>and B. fultoni;<br>ngulata, B. zeehanensis,<br>amurrayae, P., conica and P.<br>owryensis, B. gibba and B.<br>ellii, B. forthensis, B.<br>g. b. hullii, B. inflata, B.<br>topsiae, and B. trochiformis;<br>allax, B. mesibovi, B. minima, B.<br>turnerae, B. wilmotensis and P. |

<sup>&</sup>lt;sup>19</sup> Forest Practices Authority & Threatened Species Section (2012). Review of Threatened Fauna Adviser: background report 3 – Draft decision pathways & recommended actions for the web-based tool. Forest Practices Authority, Hobart.

| Script name          | Summary                                                               | Notes                                                                             |
|----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 5e. Model beetles,   | Generates REM habitat for ground dwelling invertebrates or those with | Species modelled under this script are:                                           |
| spiders, weevils and | relatively restricted range and/or mobility.                          | Blind Velvet Worm (Tasmanipatus                                                   |
| snails               | Each species has modelling rules specific to the species.             | anopthalmus);                                                                     |
|                      |                                                                       | <ul> <li>Bornemisszas Stag Beetle (Hoplogonus<br/>bornemisszai):</li> </ul>       |
|                      |                                                                       | <ul> <li>Broad-toothed Stag Beetle (Lissotes</li> </ul>                           |
|                      |                                                                       | menalcas);                                                                        |
|                      |                                                                       | <ul> <li>Burgundy Snail (Helicarion rubicundus);</li> </ul>                       |
|                      |                                                                       | <ul> <li>Cataract Gorge Snail (Pasmaditta<br/>jungermanniae);</li> </ul>          |
|                      |                                                                       | • Giant Velvet Worm (Tasmanipatus barretti);                                      |
|                      |                                                                       | • Keeled Snail (Tasmaphena lamproides);                                           |
|                      |                                                                       | <ul> <li>Lake Fenton Trapdoor Spider (<i>Plesiothele fentoni</i>);</li> </ul>     |
|                      |                                                                       | • Miena Jewel Beetle (Castiarina insculpta);                                      |
|                      |                                                                       | <ul> <li>Mount Mangana Stag Beetle (Lissotes<br/>latidens);</li> </ul>            |
|                      |                                                                       | • Simsons Stag Beetle (Hoplogonus simsoni);                                       |
|                      |                                                                       | • Skemps Snail ( <i>Charopidae</i> sp. Skemps);                                   |
|                      |                                                                       | <ul> <li>Southern Hairy Red Snail (Chloritobadistes victoriae);</li> </ul>        |
|                      |                                                                       | <ul> <li>Vanderschoors Stag Beetle (Hoplogonus<br/>vanderschoori): and</li> </ul> |
|                      |                                                                       | <ul> <li>Weldborough Egrest Weevil (Enchymus sp.</li> </ul>                       |
|                      |                                                                       | nov.).                                                                            |
|                      |                                                                       |                                                                                   |

| Script name                              | Summary                                                                                                                                                                                                                                                                                                                                   | Notes                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5f. Model<br>butterflies and<br>skippers | Generates REM habitat for flying / more mobile invertebrates.<br>Each species has modelling rules specific to the species.                                                                                                                                                                                                                | <ul> <li>Species modelled under this script are:</li> <li>Chaostola Skipper (<i>Antipodia chaostola</i>);</li> <li>Marrawah Skipper (<i>Oreisplanus munionga</i> subsp. <i>larana</i>); and</li> <li>Ptunarra Brown Butterfly (<i>Oreixenica ptunarra</i>).</li> </ul>                                                                                                                                |
| 5g. Model<br>freshwater crayfish         | Generates REM for freshwater crayfish species.<br>Each species has modelling rules specific to the species.                                                                                                                                                                                                                               | <ul> <li>Species modelled under this script are:</li> <li>Burnie Burrowing Crayfish (<i>Engaeus yabbimunna</i>);</li> <li>Central North Burrowing Crayfish (<i>E. granulatus</i>);</li> <li>Giant Freshwater Crayfish (<i>Astacopsis gouldi</i>);</li> <li>Mount Arthur Burrowing Crayfish (<i>E. orramakunna</i>); and</li> <li>Scottsdale Burrowing Crayfish (<i>E. spinicaudataus</i>).</li> </ul> |
| 5h. Model<br>mammals habitat             | Generates REM habitat for known den sites of some species.<br>Each species uses the same habitat model to generate a zone around known<br>dens.<br>Other mammals species are modelled using the standard REM procedures for<br>modelling using NVA records and other habitat parameters (e.g. native<br>vegetation, currency of records). | <ul> <li>Species modelled under this script are:</li> <li>Spotted-tailed Quoll (<i>Dasyurus maculatus</i>); and</li> <li>Tasmanian Devil (<i>Sarcophilus harrissi</i>).</li> </ul>                                                                                                                                                                                                                    |

25

| Script name                                     | Summary                                                                                                                                                                                                                                                                                                                                                                                                                               | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. Build standard<br>REM indicators             | Script builds the standard set of REM indicators using various combinations of<br>lookup tables (see Section 3) and some spatial selections.                                                                                                                                                                                                                                                                                          | <ul> <li>Indicators generated by the script are those relating to:</li> <li>Biophysical naturalness;</li> <li>Riparian vegetation;</li> <li>Remnant vegetation;</li> <li>Connectivity;</li> <li>Clearing bias;</li> <li>Overall landscape ecological function;</li> <li>Native vegetation significance;</li> <li>Hollow dwelling species habitat;</li> <li>Threatened and other priority species;</li> <li>Overall species indicators (priority species and hollow dwelling species habitat combined);</li> <li>Biological significance (native vegetation and species combined); and</li> <li>Biodiversity management priority (landscape ecological function and biophysical significance combined).</li> </ul> |
| 7. Post-process<br>REM to add HCV<br>indicators | Script post-processes the completed standard REM to add indicators developed<br>during this project to assist in the identification and thresholding of High<br>Conservation Values for Forestry Tasmania.<br>Indicators are generated using various inputs from the primary and derived data<br>in the REM, plus additional data from lookup tables and some spatial selection<br>developed for selected indicators (see Section 3). | <ul> <li>Indicators generated by the script are:</li> <li>Number of endemic priority species;</li> <li>Threatened flora reservation status;</li> <li>Fauna reservation status;</li> <li>Number of poorly reserved, non-threatened flora species;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Script name | Summary | Notes                                                                                            |
|-------------|---------|--------------------------------------------------------------------------------------------------|
|             |         | <ul> <li>Number of poorly reserved threatened flora<br/>species;</li> </ul>                      |
|             |         | <ul> <li>Number of poorly reserved threatened fauna species;</li> </ul>                          |
|             |         | • Overall species reservation index;                                                             |
|             |         | <ul> <li>Bioregional conservation status of<br/>vegetation communities;</li> </ul>               |
|             |         | <ul> <li>Rare or depleted old growth forests (Type 1<sup>20</sup>);</li> </ul>                   |
|             |         | <ul> <li>Reservation status of old growth forests;</li> </ul>                                    |
|             |         | <ul> <li>Type 2 old growth forests<sup>21</sup> where type 1 is<br/>rare or depleted;</li> </ul> |
|             |         | <ul> <li>Number of landscape dependent fauna<br/>species (LDF) with den/nest sites;</li> </ul>   |
|             |         | Number of threatened LDF species;                                                                |
|             |         | <ul> <li>Number of Rare or Vulnerable species that<br/>are not LDF;</li> </ul>                   |
|             |         | <ul> <li>Number of Endangered species that are not LDF;</li> </ul>                               |
|             |         | <ul> <li>Total number of threatened species that are<br/>not LDF;</li> </ul>                     |
|             |         | Number of species classified as having                                                           |

<sup>&</sup>lt;sup>20</sup> Type 1 old growth forests are those matching the definition used in development of the Tasmanian Regional Forest Agreement, i.e. ecologically mature forests where the effects of disturbance are now negligile. Details of the old growth mapping methodology are provided in:

Tasmanian Public Land Use Commission (1996). Tasmanian-Commonwealth Regional Forest Agreement background report part C: Environment & Heritage report volume II. November 1996. Tasmanian Public Land Use Commission, Hobart.

<sup>&</sup>lt;sup>21</sup> Type 2 old growth forests were defined as Mature eucalypt forests with biophysical naturalness classes 4 or 5, that are not Type 1 old growth.

| Script name | Summary | Notes                                            |
|-------------|---------|--------------------------------------------------|
|             |         | Critically Limited Locations (CLL);              |
|             |         | • Number of raptor species with nest sites;      |
|             |         | Rainforest index;                                |
|             |         | • Threatened species concentration index;        |
|             |         | <ul> <li>Species depletion index;</li> </ul>     |
|             |         | Ecosystem depletion index;                       |
|             |         | <ul> <li>Ecosystem reservation index;</li> </ul> |
|             |         | • Type 1 old growth reservation index;           |
|             |         | • Type 2 old growth reservation index; and       |
|             |         | Remnant vegetation index.                        |
|             |         |                                                  |
## ATTACHMENT 5. METADATA FOR THE DISSOLVED REM POLYGON LAYER

Key to field ins: HAZ\_REMfull\_hexdiss-1.shp

Date prepared: 3 February 2014 Date modified: 26 March 2014

**Description:** Regional Ecosystem Model (REM) for Forestry Tasmanian Forest Management Unit for FSC assessment, dissolved from the point format REM tiles based on their parent hexagons.

Format: ESRI shapefiles, polygon format.

**Derivation:** The parent data for this layer are the 15 REM tiles covering the FMU plus a buffer, and populated with data and indicators as points. The points generated are the centroids of a set of parent tiles of 0.1ha hexagons, offset by 0.5, non-overlapping and covering the land area of Tasmania, excluding Macquarie Island.

A number of the components of the REM are derived from multiple inputs (e.g. vegetation, biophysical naturalness, vegetation structure, old growth). The scripting process and lookup table impose a reliability hierarchy on the various inputs, along with logical consistency rules, to produce final classes from which REM indicators are generated. Fields of this nature are suffixed in the formats ...\_useZ, ...useX.

The layer has been generated by concatenating the key REM fields in the point tiles, assigning the concatenation to their parent hexagons, and converting to a polygon layer matching the point layers. Each layer was then dissolved to remove polygons of 0.1ha that were identical on the combination of their mapped vegetation community and whether they are part of a riparian zone. Thus there may be some loss of accuracy for other attributes, however that loss is considered below the accuracy of the input data.

The fields used to generate the concatenation for the dissolve function comprise only the definitive fields for input data (e.g. the ...useZ fields for each of the vegetation, old growth, vegetation structure and biophysical naturalness) and other fields not required to generate REM indicators. Some data have been omitted from the dissolved version to limit file size and complexity – FPA mature habitat and native vegetation density fields, and CFEV fields. Accessing data from these inputs requires use of the point or 0.1ha hexagon tiles of the data.

**Version information:** Layers represent a first pass of the standard REM data supplemented with additional information supplied by Forestry Tasmania and indicators developed for the HCV assessment.

- 21 Feb 2014 Corrected Type 2 old growth reservation index (field [OG2\_resndx]) from reservation table.
- 24 Feb 2014 Reversed ranked order of Biodiversity Management Priority (fields [BMP\_I\_rnk] and [BMP\_P\_rnk]) to number 1 (highest) to 16 (lowest). This makes it consistent with the other lookup tables that have a ranked order for each combination in their matrix.
- 27 Feb 2014 Shading of fields [LF\_BN\_useZ] and [OG\_useZ] removed, along with note identifying REM indicators as highlighted.
- 28 Feb 2014 Listed the non-threatened endemic priority fauna species in the description for [Endsp\_num].
- 5 Mar 2014 Corrected field [OG\_statusZ] for old growth tagged as null or "nd". These were checked and found to correspond to Rare/Depleted old growth. Total area of change was 62 ha.
- 13 Mar 2014 Corrected the bioregional conservation status of forest communities (field [IBRA\_statZ])
  - Updated 1750, conservation status, reservation targets, shortfalls, etc (see Table AAA\_vegcom\_dep-res\_140313.dbf). Transferred updated ecosystem depletion index and ecosystem reservation index from table to REM fields [Vegdep\_ndx] and [Vegres\_ndx].

Added fields for the current Tasveg equivalent of the RFA forest communities [JANIS\_comX] and community by bioregion [JANIS\_IBRA].

26 March 2014 – Corrected Type 2 old growth reservation index for incorrect calculation of index.

## **Known Issues:**

- There are a number of small gaps distributed across the various tiles, due to gaps in the input vegetation layer. These are generally small in area, or comprise areas where the coverage extends into coastal waterbodies. They will have minimal effect on REM outputs and interpretation.
- The rules for dissolving adjacent polygons do not force hexagons of 0.1ha to an adjoining polygon. Hence there are still polygons of this size in the data.
- Some erroneous mapping from Tasveg is still included in the data (e.g. *E. risdonii* forest in Ben Lomond bioregion) but the areas are generally quite small.

## Field types

Control fields: used to control layer integrity and links to sources Custom fields: non-standard fields used for project specific REM data Biodiversity Management Priority: fields related to overall Biodiversity Management Priority

Biological Significance Fields: fields forming part of the Biological Significance arm of the REM (these also influence aspects of Landscape Function).

Landscape Function Fields: fields forming part of the Landscape Ecological Function arm of the REM.

Freshwater Fields: fields providing links and/or summary data to the CFEV database.

Incidental fields: Use for aspects of error checking and interrogation. Can be deleted if required.

Miscellaneous: What it says. No particular purpose in relation to the REM but standard inclusions for use if required.

Note: Fields ending in Z or X are identical to a field in the polygon layer of the APUs or other input data layer, except for the last letter. The changed name facilitates populating the field off a table join.

| Field      | Туре   | Length* <sup>22</sup> | Field type | Notes                                  | Associated lookup table, more    |
|------------|--------|-----------------------|------------|----------------------------------------|----------------------------------|
|            |        |                       |            |                                        | info                             |
| First_REM_ | String | 254                   | Control    | Concatenation string of the input data | String is a concatenation of the |
|            |        |                       |            | used to generate the data.             | fields:                          |
|            |        |                       |            |                                        | [Vegcom_usZ]                     |
|            |        |                       |            |                                        | [IBRA5_useZ]                     |
|            |        |                       |            |                                        | [FPA_holow]                      |
|            |        |                       |            |                                        | [Vstr_useZ]                      |
|            |        |                       |            |                                        | [LF_BN_useZ]                     |
|            |        |                       |            |                                        | [Sp_T_listZ]                     |
|            |        |                       |            |                                        | [Sp_O_listZ]                     |
|            |        |                       |            |                                        | [LF_CB_dlsc]                     |
|            |        |                       |            |                                        | [LF_CB_alsc]                     |
|            |        |                       |            |                                        | [LF_R_rscZ]                      |
|            |        |                       |            |                                        | [LF_R_rzon]                      |
|            |        |                       |            |                                        | [LF_M_haZ]                       |
|            |        |                       |            |                                        | [LF_C_dremZ]                     |
|            |        |                       |            |                                        | [LF_C_dclrZ]                     |

<sup>&</sup>lt;sup>22</sup> \* Decimal fields are expresses as n1.n2, where n1 is the total field length, including decimal point, and n2 the number of decimal places

| Field     | Туре    | Length* <sup>22</sup> | Field type    | Notes                                                                                    | Associated lookup table, more info                                                                                                                                                                                                                                                       |
|-----------|---------|-----------------------|---------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unique_Id | Integer | 7                     | Control       | Unique Id of the polygon in this layer.                                                  |                                                                                                                                                                                                                                                                                          |
| Id        | Integer | 7                     | Control       | Unique Id of the polygon in the dissolved layer of the tile on which the polygon occurs. | Tiles are listed in field [FT_tile]                                                                                                                                                                                                                                                      |
| Id_ha     | Decimal | 9.1                   | Control       | Area of the polygon in hectares.                                                         |                                                                                                                                                                                                                                                                                          |
| REM_type  | String  | 2                     | Control       | Code for the basis of inclusion of the point in the layer.                               | Codes are:<br>H – HAZ area as originally supplied<br>by FT; and<br>S – Special Species areas<br>subsequently supplied by FT.                                                                                                                                                             |
| REM_tile  | String  | 3                     | Control       | Code for the tile in the set of REM<br>layers.                                           | Tiles are coded to indicate broad<br>geographic region, then number of<br>the tile within the region:<br>CN – Central North, CN 1, CN2;<br>E – East, E1, E2;<br>NE – North East, NE1, NE2, NE3,<br>NE4;<br>NW – North West , NW1, NW2;<br>S – South, S1, S2, S3, S4; AND<br>W –West, W1. |
| Temp_str  | String  | 12                    | Incidental    | na                                                                                       | Currently populated with the<br>concatenation of [Vegcom_usZ] and<br>[LF_R_rzon] used to control the<br>dissolving of small polygons.                                                                                                                                                    |
| LGA_codeZ | String  | 3                     | Miscellaneous | String code for the local government area in which the point is located.                 |                                                                                                                                                                                                                                                                                          |

| Field     | Туре    | Length* <sup>22</sup> | Field type                             | Notes                                                                                      | Associated lookup table, more info                        |
|-----------|---------|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| BMP_I     | Integer | 1                     | Biodiversity<br>Management<br>Priority | Level of Concern (Immediate) for<br>Biodiversity Management, looked up<br>from BMP_LCImat  | Biodiv_mgt_priority.dbf. Controlled by REM script 6.      |
| BMP_I_mat | Integer | 2                     | Biodiversity<br>Management<br>Priority | Concatenation of LF_LC_Iz and BS_LC_Iz<br>as input to matrix for generating<br>BMP_LC_I    | Biodiv_mgt_priority.dbf                                   |
| BMP_I_rnk | Integer | 2                     | Biodiversity<br>Management<br>Priority | Ranked order of Biodiversity<br>Management Priority (Immediate)                            | Biodiv_mgt_priority.dbf. Controlled by REM script 6.      |
| BMP_P     | Integer | 1                     | Biodiversity<br>Management<br>Priority | Level of Concern (Potential) for<br>Biodiversity Management, looked up<br>from BMP_LCPmat  | Biodiv_mgt_priority.dbf. Controlled by REM script 6.      |
| BMP_P_mat | Integer | 2                     | Biodiversity<br>Management<br>Priority | Concatenation of LF_LC_Pz and<br>BS_LC_Pz as input to matrix for<br>generating BMP_LC_P    | Biodiv_mgt_priority.dbf                                   |
| BMP_P_rnk | Integer | 2                     | Biodiversity<br>Management<br>Priority | Ranked order of Biodiversity<br>Management Priority (Potential)                            | Biodiv_mgt_priority.dbf. Controlled by REM script 6.      |
| BS_LC_I   | Integer | 1                     | Biological<br>Significance             | Level of Concern (Immediate) for<br>Biological Significance, based on<br>[BS_LCImat]       | Bio_significance_lu_2.dbf.<br>Controlled by REM script 6. |
| BS_LCImat | Integer | 2                     | Biological<br>Significance             | Concatenation of NV_LC_Iz and<br>SpAII_LCI for input to matrix for<br>generating BS_LC_I   | Bio_significance_lu_2.dbf                                 |
| BS_LC_P   | Integer | 1                     | Biological<br>Significance             | Level of Concern (Potential) for<br>Biological Significance, looked up from<br>[BS_LCPmat] | Bio_significance_lu_2.dbf.<br>Controlled by REM script 6. |

| Field      | Туре    | Length* <sup>22</sup> | Field type                         | Notes                                                                                                | Associated lookup table, more info                                                                                                                                                       |
|------------|---------|-----------------------|------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS_LCPmat  | Integer | 2                     | Biological<br>Significance         | Concatenation of NV_LC_Pz and<br>SpAll_LCP for input to matrix for<br>generating BS_LC_P             | Bio_significance_lu_2.dbf                                                                                                                                                                |
| Apu_og     | String  | 1                     | BS –<br>Biological<br>Significance | Determination in APUs of old growth.<br>Based on logical consistency of Tasveg<br>and RFA old growth | Values are (Y)es (forest that can be<br>old growth and is old growth), (N)o<br>(forest that can be old growth but<br>isn't, and Z or blank (any vegetation<br>that can't be old growth). |
| Cpi_commZ  | String  | 3                     | BS _ Native<br>veg                 | Vegetation community used for<br>conservation assessment in the REM,<br>from [Vegcom_usZ]            | Vegcomms_LU2.dbf                                                                                                                                                                         |
| lbra5_useZ | String  | 3                     | BS _ Native<br>veg*                | IBRA 5 bioregion accepted for polygon,<br>based on fuzzy bioregion boundary<br>analysis.             | Recorded in<br>APU_series7_keys.mdb. Table:<br>Fuzzy boundaries<br>All communities in project area<br>checked and documented prior to<br>data generation.                                |
| Nv_extbioZ | Decimal | 11.1                  | BS _ Native<br>veg                 | Extent (hectares) of the vegetation<br>community-bioregion combination<br>defined in Veg_IBRAz       | Res_ibra_current.dbf                                                                                                                                                                     |
| Nv_lc_idZ  | Integer | 1                     | BS _ Native veg                    | Display field for NV_LC_Iz. Displays cleared land as 0                                               | Res_ibra_current.dbf. Controlled by REM script 6.                                                                                                                                        |
| Nv_lc_iZ   | Integer | 1                     | BS _ Native<br>veg                 | Level of Concern (Immediate) for native vegetation                                                   | Res_ibra_current.dbf. Controlled by REM script 6.                                                                                                                                        |
| Nv_lc_pdZ  | Integer | 1                     | BS _ Native<br>veg                 | Display field for NV_PC_PZ. Displays cleared land as 0                                               | Res_ibra_current.dbf. Controlled by REM script 6.                                                                                                                                        |

| Field      | Туре    | Length* <sup>22</sup> | Field type                         | Notes                                                                                                    | Associated lookup table, more<br>info                                                                                                                             |
|------------|---------|-----------------------|------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nv_lc_pZ   | Integer | 1                     | BS _ Native<br>veg                 | Level of Concern (Potential) for native vegetation                                                       | Res_ibra_current.dbf. Controlled<br>by REM script 6.<br>Note: There are two fields with this<br>name in the data (don't' know<br>why). Data is identical in both. |
| Nv_resbioZ | Decimal | 5.1                   | BS _ Native<br>veg                 | % of Veg_IBRAz reserved in the bioregion                                                                 | Res_ibra_current.dbf                                                                                                                                              |
| Nv_restasZ | Decimal | 5.1                   | BS _ Native<br>veg                 | % of CPI_commZ reserved in the bioregion                                                                 | Res_ibra_current.dbf                                                                                                                                              |
| Nv_threatZ | String  | 1                     | BS _ Native<br>veg                 | (Y)es/(N) no field indicating if<br>CPI_commZ is listed under the EPBC Act<br>or Nature Conservation Act | Res_ibra_current.dbf                                                                                                                                              |
| Og_canbez  | String  | 1                     | BS –<br>Biological<br>Significance | Indicates if vegetation defined by<br>Vegcom_usZ can be old growth. Y/N<br>for forest, Z for non-forest  | Vegcomms_LU2.dbf                                                                                                                                                  |
| Og_fieldZ  | String  | 1                     | BS –<br>Biological<br>Significance | Indicates a determination of old growth<br>forest (or potential) based on field or<br>other sources      | Values are (Y)es or (N)o. Only<br>populated if forest that can be old<br>growth and confirmed/reliably<br>imputed from field or other sources                     |
| Og_point   | String  | 1                     | BS –<br>Biological<br>Significance | Field for recording point source old growth (NB can't be used for polygons)                              | Used for rapid survey reliability testing (point sampling). Not populated in this version.                                                                        |
| OF_FT      | String  | 1                     | BS –<br>Biological<br>Significance | FT 2013 data on determination of old growth forest.                                                      | Field is tagged (Y)es or is blank.                                                                                                                                |

| Field      | Туре    | Length* <sup>22</sup> | Field type                         | Notes                                                                                                                                                                   | Associated lookup table, more info                                                                         |
|------------|---------|-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Og_sauceZ  | String  | 32                    | BS –<br>Biological<br>Significance | Text field for recording source of old<br>growth determination. Default is the<br>APU determination (RFA with logical<br>consistency modification to current<br>Tasveg) | Only NRP field survey data included in this set.                                                           |
| Og_useZ    | String  | 1                     | BS –<br>Biological<br>Significance | Old growth determination, based on OG_canbeZ, APU_OG and OG_fieldZ                                                                                                      | Updated by REM script 3. Used as<br>an input to assessment of hollow<br>dwelling species habitat.          |
| Veg_ibraZ  | String  | 7                     | BS _ Native<br>veg                 | Concatenation of CPI_commZ and<br>IBRA5_useZ. Used for looking up<br>NV_LC_Iz and NV_LC_Pz                                                                              | Updated by REM script 3.                                                                                   |
| Vegcom_tyZ | String  | 1                     | BS _ Native<br>veg*                | Code indicating broad vegetation<br>groups. (N)ative, (C)leared, (W)ater and<br>(O)ther (sand, rocks, mud)                                                              | Vegcomm_lu2.dbf, field<br>[Vegcom_tyX]. Updated by REM<br>script 3.                                        |
| Vegcom_usZ | String  | 3                     | BS _ Native<br>veg                 | Vegetation community accepted for<br>use. Field Vcomm_fldz overrides<br>TVcomm_usZ                                                                                      | Vegcomms_LU2.dbf. There is also<br>some logical corrections to codes<br>from [Tvcomm_usZ], e.g. FPU -> FPL |
| Sp_lc_idZ  | Integer | 1                     | BS - Biological<br>Significance    | Display field for Sp_LC_Iz. Displays absence of any species as 0                                                                                                        | Sp_thr+pri_lu.dbf Looks up from<br>link with field [Sp_stmaxZ]                                             |
| Sp_lc_iZ   | Integer | 1                     | BS - Biological<br>Significance    | Level of Concern (Immediate) for<br>threatened and other priority species<br>(not hollow dwelling species)                                                              | Sp_thr+pri_lu.dbf Looks up from<br>link with field [Sp_stmaxZ]                                             |
| Sp_lc_pdZ  | Integer | 1                     | BS - Biological<br>Significance    | Display field for Sp_LC_Pz. Displays absence of any species as 0                                                                                                        | Sp_thr+pri_lu.dbf Looks up from<br>link with field [Sp_stmaxZ]                                             |
| Sp_lc_pZ   | Integer | 1                     | BS - Biological<br>Significance    | Level of Concern (Immediate) for<br>threatened and other priority species<br>(not hollow dwelling species)                                                              | Sp_thr+pri_lu.dbf Looks up from<br>link with field [Sp_stmaxZ]                                             |

| Field      | Туре    | Length* <sup>22</sup> | Field type                      | Notes                                                                                                                                                                 | Associated lookup table, more                                                                                                                                                                         |
|------------|---------|-----------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sp_o_listZ | String  | 60                    | BS - Biological<br>Significance | Concatenated list of species codes for<br>'Other' priority species (currently non-<br>listed RFA priorities, poorly reserved<br>flora species)                        | See table Consig_spp110513.dbf.<br>Rules as per threatened species but<br>additional 'Bioregional' rule set<br>applies where flora species occur in<br><2 reserves in the bioregion of the<br>record. |
| Sp_o_numZ  | Integer | 2                     | BS - Biological<br>Significance | Number of Other priority species recorded in Sp_o_listZ                                                                                                               | Number of 'Other' priority species identified for the point.                                                                                                                                          |
| Sp_stmaxZ  | Integer | 1                     | BS - Biological<br>Significance | 5 class lookup combining for Sp_lc<br>fields (1 highest, 5 or 0 no priority<br>species). Maximum species status from<br>among Threatened & Other priority<br>species. | See Consig_spp110513.dbf. Field<br>[REM_maxst] identifies maximum<br>value for individual species. REM<br>script 4 controls attribution. 1 is for<br>>1 listed threatened species only.               |
| Sp_st_tmp  | Integer | 1                     | BS - Biological<br>Significance | Temporary field used in populating field<br>[Sp_stmaxZ]                                                                                                               | Used internally by REM script 4 but not of any meaning otherwise.                                                                                                                                     |
| Sp_sumallZ | Integer | 3                     | BS - Biological<br>Significance | Sum of all Threatened and Other<br>priority species from Sp_o_numsZ and<br>Sp_t_numZ                                                                                  |                                                                                                                                                                                                       |
| Sp_t_listZ | String  | 60                    | BS - Biological<br>Significance | Concatenated list of listed Threatened species codes                                                                                                                  | See table Consig_spp110513.dbf.<br>Inherits species data set in APUs or<br>attributed by REM scripts 4 (NVA<br>point processing) and 5 (special<br>rules derived for individual species)              |
| Sp_t_numz  | Integer | 2                     | BS - Biological<br>Significance | Number of Threatened species<br>recorded in Sp t listZ                                                                                                                | Number of listed threatened species attributed to the point.                                                                                                                                          |
| SpA_LCImat | Integer | 2                     | BS - Biological<br>Significance | Concatenation of Sp_LC_Iz and<br>Vstr_LC_Iz. Input to matrix for looking<br>up SpAll_LCI and SpAll_LCId                                                               |                                                                                                                                                                                                       |

| Field      | Туре    | Length* <sup>22</sup> | Field type                      | Notes                                                                                                   | Associated lookup table, more info                                                                                                                  |
|------------|---------|-----------------------|---------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| SpA_LCPmat | Integer | 2                     | BS - Biological<br>Significance | Concatenation of Sp_LC_Pz and<br>Vstr_LC_Pz. Input to matrix for looking<br>up SpAll_LCP and SpAll_LCIP |                                                                                                                                                     |
| SpAll_LCI  | Integer | 1                     | BS - Biological<br>Significance | Level of Concern (Immediate) for all priority species. Derived from lookup of [SpA_LCImat]              | Pri_spp_LU2.dbf. Updated by REM script 6.                                                                                                           |
| SpAll_LCld | Integer | 1                     | BS - Biological<br>Significance | Display field for SpAll_LCI. Displays lowest LC_I (1) as 0                                              | Pri_spp_LU2.dbf. Updated by REM script 6.                                                                                                           |
| SpAll_LCP  | Integer | 1                     | BS - Biological<br>Significance | Level of Concern (Potential) for all<br>priority species. Derived from lookup<br>of SpA_LCPmat          | Pri_spp_LU2.dbf. Updated by REM script 6.                                                                                                           |
| SpAll_LCPd | Integer | 1                     | BS - Biological<br>Significance | Display field for SpAll_LCP. Displays lowest LC_P (1) as 0                                              | Pri_spp_LU2.dbf. Updated by REM script 6.                                                                                                           |
| Vstr_clasZ | Integer | 1                     | BS - Biological<br>Significance | Integer class for VStr_useZ.                                                                            | Hollowspp_7clint_LU.dbf. Updated<br>by REM script 3 but now<br>superseded by integration<br>procedure with [FPA_Holow] to<br>produce LC classes.    |
| Vstr_fldZ  | String  | 3                     | BS - Biological<br>Significance | Forest maturity class from field<br>observations or other polygon sources<br>(e.g. PI-type data)        | See Hollow_7cl-int_lu.dbf                                                                                                                           |
| Vstr_lc_iZ | Integer | 1                     | BS - Biological<br>Significance | Level of Concern (Immediate) for hollow dwelling species                                                | Hollowspp_7clint_LU.dbf & REM<br>script 6. Logically tests and<br>integrate [Vstr_useZ] and<br>[FPA_Holow] - latter overrides<br>where appropriate. |

| Field      | Туре    | Length* <sup>22</sup> | Field type                      | Notes                                                                                                                       | Associated lookup table, more info                                                                                                                                             |
|------------|---------|-----------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vstr_lc_pZ | Integer | 1                     | BS - Biological<br>Significance | Level of Concern (Potential) for hollow<br>dwelling species                                                                 | Hollowspp_7clint_LU.dbf & REM<br>script 6. Logically tests and<br>integrate [Vstr_useZ] and<br>[FPA_Holow] - latter overrides<br>where appropriate.                            |
| Vstr_lcidZ | Integer | 1                     | BS - Biological<br>Significance | Display field for Vstr_LC_Iz. Displays<br>other than eucalypt forest or old<br>growth as 0                                  | Hollowspp_7clint_LU.dbf & REM<br>script 6. Logically tests and<br>integrate [Vstr_useZ] and<br>[FPA_Holow] - latter overrides<br>where appropriate.                            |
| Vstr_lcpdZ | Integer | 1                     | BS - Biological<br>Significance | Display field for Vstr_LC_Pz. Displays other than eucalypt forest or old growth as 0                                        | Hollowspp_7clint_LU.dbf & REM<br>script 6. Logically tests and<br>integrate [Vstr_useZ] and<br>[FPA_Holow] - latter overrides<br>where appropriate.                            |
| FPA_Holow  | String  | 1                     | BS - Biological<br>Significance | Predicted hollow abundance class from<br>FPA data set, derived from PI analysis.<br>Classes are (L)ow, (M)edium and (H)igh. | Data does not apply to all eucalypt<br>forests (coverage is 1.9MHa). REM<br>script 6 integrates with [Vstr_useZ]<br>data. L->M, M->H, H-VH, i.e. FPA<br>classes raised by one. |
| Vstr_useZ  | String  | 3                     | BS - Biological<br>Significance | Forest structure accepted. Vstr_fldZ<br>override Vstr_RFAz where available,<br>otherwise Vstr_RFAz                          | Codes in Hollow_7cl-int_lu.dbf.<br>Logical consistency controlled by<br>REM script 3.                                                                                          |
| LF_A_ImatZ | Integer | 3                     | Landscape<br>function           | Concatenation of fields [LF_CB_Iz],<br>[LF_CRR_Iz] and [LF_BN_Iz] for input to<br>Landscape Function lookup.                | LandscapeFunction_LU.dbf.<br>Controlled by REM script 6.                                                                                                                       |
| LF_A_Iz    | Integer | 1                     | Landscape<br>function           | Level of Concern (Immediate) for<br>Landscape function                                                                      | LandscapeFunction_LU.dbf.<br>Controlled by REM script 6.                                                                                                                       |

| Field      | Туре    | Length* <sup>22</sup> | Field type            | Notes                                                                                                       | Associated lookup table, more<br>info                    |
|------------|---------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| LF_A_PdZ   | Integer | 1                     | Landscape<br>function | Display field for [LF_A_Pz]. Displays non-native vegetation as 0.                                           | LandscapeFunction_LU.dbf.<br>Controlled by REM script 6. |
| LF_A_ldZ   | Integer | 1                     | Landscape<br>function | Display field for [LF_A_Iz]. Displays non-native vegetation as 0                                            | LandscapeFunction_LU.dbf                                 |
| LF_A_lrnkZ | Integer | 2                     | Landscape<br>function | Ranked order (1_64) of combinations in [LF_A_ImatZ] (provides expanded scale)                               | LandscapeFunction_LU.dbf.<br>Controlled by REM script 6. |
| LF_A_PrnkZ | Integer | 2                     | Landscape<br>function | Ranked order (1_64) of combinations in<br>[LF_A_PmatZ] (provides expanded<br>scale)                         | LandscapeFunction_LU.dbf.<br>Controlled by REM script 6. |
| LF_A_PmatZ | Integer | 3                     | Landscape<br>function | Concatenation of fields [LF_CB_Pz],<br>[LF_CRR_Pz] and [LF_BN_Pz[ for input<br>to Landscape Function lookup | LandscapeFunction_LU.dbf.<br>Controlled by REM script 6. |
| LF_A_Pz    | Integer | 1                     | Landscape<br>function | Level of Concern (Potential) for<br>Landscape Function                                                      | LandscapeFunction_LU.dbf.<br>Controlled by REM script 6. |
| LF_BN_ldz  | Integer | 1                     | Landscape<br>function | Display field for LF_BN_Iz. Displays non-native veg as 0.                                                   | BioNat_LU.dbf. Controlled by REM script 6.               |
| LF_BN_Iz   | Integer | 1                     | Landscape<br>function | Level of Concern (Immediate) for<br>Biophysical Naturalness. Looked up<br>from LF_BN_useZ                   | BioNat_LU.dbf. Controlled by REM script 6.               |
| LF_BN_Pdz  | Integer | 1                     | Landscape<br>function | Display field for LF_BN_Iz. Displays non-native veg as 0.                                                   | BioNat_LU.dbf. Controlled by REM script 6.               |

| Field      | Туре    | Length* <sup>22</sup> | Field type             | Notes                                                                                                                                                                                       | Associated lookup table, more info                                                                                                                                                                                                          |
|------------|---------|-----------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LF_BN_useZ | Integer | 2                     | Landscape<br>function  | Biophysical Naturalness class to be<br>used. LF_BN_fldZ overrides LF_BN_APU                                                                                                                 | Checked for logical consistency<br>using Vegcomm_Lu2.dbf (fields<br>[BN_min] and [BN_max]) and REM<br>script 3.<br>NOTE: Updated with rules applied<br>to FT disturbance data in field<br>[LF_FT_Dist] unless logical<br>consistency issue. |
| LF_CB_ALSC | String  | 12                    | Landscape<br>function* | Name of the land system component<br>from the automated land components<br>layer. Format is nnnnnAA where<br>nnnnn is the land system number and<br>AA the land component                   | Lsys+lctpi29_1.shp <sup>23</sup>                                                                                                                                                                                                            |
| LF_CB_ApcZ | Decimal | 5.1                   | Landscape<br>function  | Clearing bias percentage from<br>automated Land Components layer                                                                                                                            | Ls+lc29+vtyp711_clearingbias.dbf                                                                                                                                                                                                            |
| LF_CB_clsZ | Integer | 1                     | Landscape<br>function  | Integer class for clearing bias, based on<br>banding of clearing bias of land<br>components (v16 desktop or field<br>where available, v29 Topographic<br>Position Index version where not)) | Clbias_lu.dbf                                                                                                                                                                                                                               |

 $<sup>^{23}</sup>$  Layer is an automated derivation of 6 landform classes using the DEM and assigned to land systems. Minimum size generally 2ha.

| Field      | Туре    | Length* <sup>22</sup> | Field type             | Notes                                                                                                                                                                                                                                                | Associated lookup table, more info               |
|------------|---------|-----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| LF_CB_DLSC | String  | 12                    | Landscape<br>function* | Name of the land system component<br>from the land components master<br>layer. Format is nnnnnABC where<br>nnnnnn is the land system number and<br>ABC the land component. (Most are<br>only A for one component but may be<br>ABC etc where merged) | Lcomps_master_current.shp                        |
| LF_CB_DpcZ | Decimal | 5.1                   | Landscape<br>function  | Clearing bias percentage from land<br>components master layer (Desktop<br>&/or Field                                                                                                                                                                 | Lcompint_ext.dbf.                                |
| LF_CB_Iz   | Integer | 1                     | Landscape<br>function  | Level of Concern (Immediate) for<br>Clearing Bias                                                                                                                                                                                                    | CLBias_LU.dbf. Controlled by REM script 6.       |
| LF_CB_luZ  | String  | 2                     | Landscape<br>function  | Lookup string for Clearing Bias.<br>Concatenation of [Vegcom_tyz] and<br>[LF_CB_clsZ]                                                                                                                                                                | CLBias_LU.dbf                                    |
| LF_CB_pcZ  | Decimal | 5.1                   | Landscape<br>function  | Adopted Clearing Bias percentage.<br>Default is that [LF_CB_DpcZ] overrides<br>[LF_CB_ApcZ] but an estimate, average<br>or calculation can also be used                                                                                              | Controlled by REM script 6.                      |
| LF_CB_Pz   | Integer | 1                     | Landscape<br>function  | Level of Concern (Potential) for Clearing<br>Bias                                                                                                                                                                                                    | CLBias_LU.dbf. Controlled by REM script 6.       |
| LF_C_dclrZ | String  | 0                     | Landscape<br>function  | Descriptor of the distance of cleared land to the nearest native vegetation                                                                                                                                                                          | Calculated by REM script 2.                      |
| LF_C_clsZ  | Integer | 1                     | Landscape<br>function  | Integer class of the distance class<br>defined by either LF_C_dclrZ or<br>LF_C_dremZ                                                                                                                                                                 | Connectivity LU.dbf. Controlled by REM script 6, |
| LF_C_Iz    | Integer | 1                     | Landscape<br>function  | Level of Concern (Immediate) for<br>connectivity                                                                                                                                                                                                     | Connectivity LU.dbf. Controlled by REM script 6, |

| Field      | Туре    | Length* <sup>22</sup> | Field type            | Notes                                                                                                                                   | Associated lookup table, more info                                                      |
|------------|---------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| LF_C_Pz    | Integer | 1                     | Landscape             | Level of Concern (Potential) for                                                                                                        | Connectivity LU.dbf. Controlled by                                                      |
|            |         | /                     | function              | connectivity                                                                                                                            | REM script 6,                                                                           |
| LF_C_lustZ | String  | 2                     | Landscape<br>function | Lookup string for connectivity. Field is a concatenation of [Vegcom_tyZ] and [LF_C_clsZ]                                                | Connectivity_LU.dbf                                                                     |
| LF_C_dremZ | String  | 5                     | Landscape<br>function | Descriptor of the distance of a native vegetation patch to the near non-remnant (>200m) patch                                           | Data is calculated by a separate<br>script run over the APUs. Added by<br>REM script 2. |
| LF_CRR_Iz  | Integer | 1                     | Landscape<br>function | Level of Concern (Immediate) for<br>landscape configuration (Connectivity,<br>Remnant Veg and Riparian Veg)                             | LscapFunction_submat_CRR.dbf.<br>Added by REM script 6.                                 |
| LF_CRR_Pz  | Integer | 1                     | Landscape<br>function | Level of Concern (Potential) for<br>landscape configuration (Connectivity,<br>Remnant Veg and Riparian Veg)                             | LscapFunction_submat_CRR.dbf.<br>Added by REM script 6.                                 |
| LF_CRR_ImZ | Integer | 3                     | Landscape<br>function | Concatenation of [LF_C_Iz], [LF_M_Iz]<br>and [LF_R_Iz]. Used for looking up<br>submatrix for input to main Landscape<br>Function lookup | LscapFunction_submat_CRR.dbf.<br>Generated by REM script 6.                             |
| LF_CRR_PmZ | Integer | 3                     | Landscape<br>function | Concatenation of [LF_C_Pz], [LF_M_Pz]<br>and [LF_R_Pz]. Used for looking up<br>submatrix for input to main Landscape<br>Function lookup | LscapFunction_submat_CRR.dbf.<br>Generated by REM script 6.                             |
| LF_M_Iz    | Integer | 1                     | Landscape<br>function | Level of Concern (Immediate) for remnant vegetation                                                                                     | RemnantVeg_LU.dbf. Controlled by<br>REM script 6.                                       |
| LF_M_Pz    | Integer | 1                     | Landscape<br>function | Level of Concern (Potential) for remnant vegetation                                                                                     | RemnantVeg_LU.dbf. Controlled by<br>REM script 6.                                       |
| LF_M_IdZ   | Integer | 1                     | Landscape<br>function | Display field for LF_M_Iz. Displays non-<br>native vegetation as 0.                                                                     | RemnantVeg_LU.dbf. Controlled by REM script 6.                                          |

| Field      | Туре    | Length* <sup>22</sup> | Field type | Notes                                     | Associated lookup table, more         |
|------------|---------|-----------------------|------------|-------------------------------------------|---------------------------------------|
|            |         |                       |            |                                           | info                                  |
| LF_M_PdZ   | Integer | 1                     | Landscape  | Display field for LF_M_Pz. Displays       | RemnantVeg_LU.dbf. Controlled by      |
|            |         |                       | function   | non-native vegetation as 0.               | REM script 6.                         |
| LF_M_clsZ  | Integer | 1                     | Landscape  | Patch size class for size in [LF_M_haZ].  | RemnantVeg_lu.dbf                     |
|            |         |                       | function   |                                           | Added by REM script 6.                |
| LF_M_haZ   | Decimal | 12.3                  | Landscape  | Area in hectares of the patch of native   | APU7_current.shp. Added by REM        |
|            |         |                       | function   | vegetation                                | script 2.                             |
| LF_R_catZ  | Integer | 1                     | Landscape  | Integer category for native riparian      | CFEVRivers_lookup_tables.xls.         |
|            |         |                       | function   | vegetation from LF_R_rvpcZ                | Modified in ripveg_lu.dbf.            |
|            |         |                       |            |                                           | Controlled by REM script 6.           |
| LF_R_CFEV  | Decimal | 4.2                   | Landscape  | CFEV riparian vegetation proportion       | CFEVRivers_sensible.shp <sup>24</sup> |
|            |         |                       | function   | (0_1) for the river section in LF_R_rscZ  |                                       |
| LF_R_Iz    | Integer | 1                     | Landscape  | Level of Concern (Immediate) for native   | RipVeg_LU.dbf. Controlled by REM      |
|            |         |                       | function   | riparian vegetation cover                 | script 6.                             |
| LF_R_Pz    | Integer | 1                     | Landscape  | Level of Concern (Potential) for native   | RipVeg_LU.dbf. Controlled by REM      |
|            |         |                       | function   | riparian vegetation cover                 | script 6.                             |
| LF_R_rvpcZ | Decimal | 4.2                   | Landscape  | Riparian vegetation proportion (0_1) to   | Controlled by REM script 6.           |
|            |         |                       | function   | be used for analysis. [LF_R_revZ]         |                                       |
|            |         |                       |            | overrides [LF_R_CFEV] where >= 5          |                                       |
|            |         |                       | . <b>.</b> | points in RSC are in layer.               |                                       |
| LF_R_revZ  | Decimal | 4.2                   | Landscape  | Revised riparian vegetation proportion    | Calculated by summarising each        |
|            |         |                       | function   | (0_1) for the river section in LF_R_rscZ. | RSC in the layer on the number of     |
|            |         |                       |            | Recalculate to account for updated        | riparian points ([LF_R_rzone]) and    |
|            |         |                       |            | vegetation mapping                        | [Vegcom_tyZ] and recalculating        |

<sup>&</sup>lt;sup>24</sup> NRP's working copy of the CFEV rivers database. Retains all original CFEV data but with additional data and minor modifications to field names and attributes (e.g. # decimal points) to assist in data management.

| Field      | Туре    | Length* <sup>22</sup> | Field type            | Notes                                                                                                                                                | Associated lookup table, more info                                                                                                                                                                                                          |
|------------|---------|-----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LF_R_rzon  | String  | 1                     | Landscape<br>function | (Y)es / (N)o indicating if part of riparian<br>zone as per CFEV definition, i.e. 50m<br>either side of streams, 100m around<br>waterbodies, wetlands | Generated by REM script 2.                                                                                                                                                                                                                  |
| LF_R_rscZ  | Integer | 6                     | Landscape<br>function | Unique Id of the River Section<br>Catchment from CFEV                                                                                                |                                                                                                                                                                                                                                             |
|            | Integer | 2                     | FT indicators         | Number of endemic priority species                                                                                                                   | Priority species comprise all listed<br>threatened species, poorly reserved<br>flora species, and a small number of<br>non-listed fauna species (Eastern<br>Quoll and Tasmanian Bettong).<br>Data stored in<br>Consig_spp_rules_current.dbf |
| Flora_poor | Integer | 2                     | FT indicator          | Number of non-threatened flora species that are poorly reserved.                                                                                     | Defined as being represented in <2<br>reserves in the bioregion, except<br>where reserves are very large.<br>Data stored in<br>Consig_spp_rules_current.dbf                                                                                 |

| Field      | Туре    | Length* <sup>22</sup> | Field type   | Notes                                                           | Associated lookup table, more                                                                                                                                                                                                                                                                                                                             |
|------------|---------|-----------------------|--------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FlorT_poor | Integer | 2                     | FT indicator | Number of threatened flora species<br>that are poorly reserved. | Defined as:<br>Endangered – reserved in less than<br>30% of land systems on which<br>species has been recorded<br>(rounded up where <6 land<br>systems);<br>Rare or vulnerable – reserved in<br><15% of land systems on which<br>species has been recorded<br>(rounded up where <6 land<br>systems).<br>Data stored in<br>Consig. spn. rules. current.dbf |
| Fauna_poor | Integer | 2                     | FT indicator | Number of poorly reserved threatened fauna species              | Defined as:<br>Endangered – reserved in less than<br>30% of land systems on which<br>species has been recorded<br>(rounded up where <6 land<br>systems);<br>Rare or vulnerable – reserved in<br><15% of land systems on which<br>species has been recorded<br>(rounded up where <6 land<br>systems).<br>Data stored in<br>Consig_spp_rules_current.dbf    |

| Field      | Туре   | Length* <sup>22</sup> | Field type   | Notes                                                                                                                             | Associated lookup table, more                                                                                                                                                                 |
|------------|--------|-----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IBRA_statZ | String | 2                     | FT indicator | Bioregional conservation status of the<br>vegetation community (field<br>[CPI_comm] for non-forest, RFA<br>equivalent for forest. | Codes are:<br>p – Present, not threatened;<br>R – Rare;<br>V – Vulnerable;<br>RV – Rare and Vulnerable;<br>E – Endangered; and<br>ER – Endangered and Rare.<br>See table Res_IBRA_current.dbf |
| OG_statusZ | String | 2                     | FT indicator | Bioregional conservation status of old growth forests                                                                             | Codes are:<br>p – Present, not threatened;<br>R – Rare;<br>D – Depleted;<br>RD – Rare and Depleted.<br>See table VegIB_OG_status.dbf                                                          |
| OGres_targ | String | 1                     | FT indicator | Indicates if the old growth forest of the community is reserved to its JANIS target on a bioregional basis.                       | Code is (N)o.<br>See table VegIB_OG_status.                                                                                                                                                   |
| OGtyp2_RD  | String | 1                     | FT indicator | Indicates if the forest is type 2 old<br>growth of a forest community for which<br>old growth is Rare or Depleted.                | Type 2 old growth is mature forest<br>([Vstr_useZ] = "Mat") and<br>biophysical naturalness<br>(LF_BN_useZ]) >= 4.<br>See table VegIB_OG_status.dbf                                            |

| Field      | Туре    | Length* <sup>22</sup> | Field type   | Notes                                                                                                        | Associated lookup table, more info                                                                                                                                                                                                                                                                                                                             |
|------------|---------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDF_denest | Integer | 2                     | FT indicator | Number of Landscape Dependent<br>Fauna that are threatened and which<br>are attributed as den or nest sites. | Species for which the attribute is<br>assigned are:<br>Masked Owl;<br>Wedge-tailed Eagle;<br>White-bellied Sea Eagle;<br>Grey Goshawk;<br>Swift Parrot;<br>Tasmanian Devil;<br>Spotted-tailed Quoll.<br>See table<br>Consig_spp_rules_current.dbf                                                                                                              |
| LDF_RTE    | Integer | 2                     | FT indicator | Number of threatened Landscape<br>Dependent Fauna attributed for the<br>polygon.                             | LDF species are:<br>Masked Owl;<br>Wedge-tailed Eagle;<br>White-bellied Sea Eagle;<br>Swift Parrot;<br>Gray Goshawk;<br>Tasmanian Devil;<br>Spotted-tailed Quoll;<br>Australian Grayling;<br>Azure Kingfisher;<br>Giant Freshwater Crayfish;<br>Swan Galaxias;<br>Clarence Galaxias;<br>Eastern Barred Bandicoot.<br>See table<br>Consig spp rules current.dbf |

| Field      | Туре    | Length* <sup>22</sup> | Field type    | Notes                                                                                               | Associated lookup table, more info                                                                                                   |
|------------|---------|-----------------------|---------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| RV_notLDF  | Integer | 2                     | FT indicators | Number of Rare or Vulnerable species<br>that are not Landscape Dependent<br>Fauna.                  |                                                                                                                                      |
| End_notLDF | Integer | 2                     | FT indicator  | Number of Endangered or Critically<br>Endangered species that are not<br>Landscape Dependent Fauna. |                                                                                                                                      |
| Thr_notLDF | Integer | 2                     | FT indicator  | Total number of listed threatened<br>species that are not Landscape<br>Dependent Fauna.             | Fields is sum of [RV_notLDF] and [End_notLDF].                                                                                       |
| CLL_spp    | Integer | 2                     | FT indicator  | Number of species attributed as having<br>Critically Limited Locations.                             | CLL species are those occurring in 1<br>land system or <= 6 land<br>components.<br>See table<br>Consig_spp_rules_current.dbf         |
| Raptor_nst | Integer | 2                     | FT indicator  | Count of the number of raptor species nests attributed for the polygon.                             | Species are:<br>Grey Goshawk;<br>Wedge-tailed Eagle;<br>White-bellied Sea Eagle.                                                     |
| Spp_resndx | Integer | 2                     | FT indicator  | Species reservation index, measured as<br>the total number of poorly reserved<br>species            | Field is the sum of [Flora_poor],<br>[FlorT_poor] and [Fauna_poor].                                                                  |
| Rainft_ndx | Integer | 1                     | FT indicator  | Rainforest indicator                                                                                | Values are 1 (rainforest) or 0 (not<br>rainforest).<br>Rainforest is Tasveg "R" codes, as<br>expressed in the field<br>[Vegcom_usZ]. |

| Field      | Туре    | Length* <sup>22</sup> | Field type   | Notes                                                                                           | Associated lookup table, more info                                                                                                                                                                                          |
|------------|---------|-----------------------|--------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RTEcon_ndx | Integer | 5                     | FT indicator | Indicator of the concentration of threatened species attributed.                                | See table attached.<br>Indicator is the sum of the scores<br>for each species.                                                                                                                                              |
| Sppdep_ndx | Integer | 2                     | FT indicator | Indicator of level of depletion of each species attributed for the polygon.                     | See table attached.<br>Indicator is the sum of the scores<br>for each species.                                                                                                                                              |
| Vegdep_ndx | Integer | 2                     | FT indicator | Indicator of the depletion of the vegetation community within the bioregion.                    | Values are:<br>0 – present (not threatened) or<br>Rare;<br>1 – Vulnerable;<br>2 – Rare and Vulnerable;<br>3 – Endangered;<br>4 – Rare and Endangered.                                                                       |
| Vegres_ndx | Integer | 1                     | FT indicator | Ecosystem reservation index for the vegetation community.                                       | See table attached.<br>Non-forest vegetation is assessed<br>on a separate schema due to the<br>incompleteness of data on pre-1750<br>extent and reservation targets.                                                        |
| OG1_resndx | Integer | 2                     | FT indicator | Reservation index for type 1 old growth (mapped old growth).                                    | See table attached.                                                                                                                                                                                                         |
| OG2_resndx | Integer | 2                     | FT indicator | Reservation index for type 2 old growth<br>(mature forest, biophysical naturalness<br>4 and 5). | See table attached.<br>Indicator is based on the<br>percentage of the unreserved area<br>of type 2 old growth that would be<br>needed to meet the reservation<br>target for type 1 old growth which<br>is Rare or Depleted. |

| Field T <sup>v</sup> | Гуре   | Length* <sup>22</sup> | Field type   | Notes                                                | Associated lookup table, more<br>info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|--------|-----------------------|--------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remveg_ndx Ir        | nteger | 2                     | FT indicator | Index of significance of remnant vegetation patches. | Value of indicator is 1 or 0.<br>Remnant vegetation is contiguous<br>native vegetation of <=200ha.<br>REM landscape function indicators<br>are used to identify important<br>remnants.<br>Patches are attributed if:<br>Landscape function immediate level<br>of concern [LF_A_Iz] is High (3) or<br>Very High (4);<br>Land component has been >90%<br>cleared (field [LF_CB_apcZ], except<br>where [LF_CB_dpcZ] populated);<br>Native vegetation comprises <10%<br>of land in surrounding 1km<br>(external data);<br>Native vegetation comprises <30%<br>of land in surrounding 5km<br>(external data); |

| Field      | Туре   | Length* <sup>22</sup> | Field type | Notes                                  | Associated lookup table, more       |
|------------|--------|-----------------------|------------|----------------------------------------|-------------------------------------|
|            |        |                       |            |                                        | info                                |
| JANIS_ComX | String | 3                     | Derived    | Vegetation community used for analysis | For forests, the communities are    |
|            |        |                       |            | against JANIS criteria.                | the nearest Tasveg equivalent to    |
|            |        |                       |            |                                        | the 51 RFA forest communities.      |
|            |        |                       |            |                                        | Multiple Tasveg forests can go into |
|            |        |                       |            |                                        | a single RFA-equivalent community   |
|            |        |                       |            |                                        | (e.g. WOB, WOR, WOL and WOU all     |
|            |        |                       |            |                                        | become WOU). For non-forest the     |
|            |        |                       |            |                                        | JANIS community is one or more      |
|            |        |                       |            |                                        | Tasveg communities into a           |
|            |        |                       |            |                                        | community for analysis (e.g. ARS    |
|            |        |                       |            |                                        | ASS, AUS all become AUS).           |
| JANIS_IBRx | String | 7                     | Derived    | JANIS bioregional community used for   | Field is a concatnation of          |
|            |        |                       |            | analysis against JANIS criteria.       | [JANIS_com] and [IBRA5_useZ].       |

## Threatened species concentration index (field [RTEcon\_ndx])

| Species type                                      | Rare / Vulnerable<br>species | Endangered / Critically<br>Endangered species |
|---------------------------------------------------|------------------------------|-----------------------------------------------|
| Landscape Dependent Fauna –<br>den or nest sites  | 1                            | 100                                           |
| Landscape Dependent Fauna –<br>habitat            | 0                            | 10                                            |
| Other species with Critically<br>Limited Location | 1                            | 100                                           |
| All other species, not as above                   | 1                            | 10                                            |

'Scores' are summed for each species attributed to the polygon to generate the index value.

## Threatened species depletion index (field [Sppdep\_ndx])

'Scores' are summed for each species attributed to the polygon to generate the index value. The rationale for the scoring system is that species depletion is explicitly considered as part of the process of determining listing of threatened species.

| Species stats                        | Critically limited location<br>species | Not critically limited location<br>species |
|--------------------------------------|----------------------------------------|--------------------------------------------|
| Rare                                 | 0                                      | 0                                          |
| Vulnerable                           | 2                                      | 1                                          |
| Endangered, Critically<br>Endangered | 3                                      | 2                                          |

### Ecosystem reservation index (field [Vegres\_ndx])

Forest and non-forest vegetation are assessed separately due to incompleteness of non-forest data for pre-1750 extent and reservation targets.

#### Forest reservation schema

| IBRA<br>conservation<br>status | Reserved to<br>target | <10% short<br>of target | 10-30%<br>short of<br>target | 30-50%<br>short of<br>target | >50% short<br>of target |
|--------------------------------|-----------------------|-------------------------|------------------------------|------------------------------|-------------------------|
| Not threatened                 | 0                     | 1                       | 2                            | 3                            | 3                       |
| Vulnerable                     | 0                     | 1                       | 2                            | 3                            | 3                       |
| Rare                           | 0                     | 2                       | 3                            | 4                            | 4                       |
| Endangered                     | 0                     | 2                       | 3                            | 4                            | 4                       |

## Non-forest reservation schema

|                           | Concern – Immediate & Potential<br>Reservation level (% extent in bioreigon) |        |        |      |  |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------|--------|--------|------|--|--|--|--|--|
| Status and bioreg. extent | <10%                                                                         | 10-30% | 30-60% | >60% |  |  |  |  |  |
| Threatened                |                                                                              |        |        |      |  |  |  |  |  |
| Any                       | 4                                                                            | 4      | 3      | 3    |  |  |  |  |  |
| Not threatened            |                                                                              |        |        |      |  |  |  |  |  |
| Bioregional extent        |                                                                              |        |        |      |  |  |  |  |  |
| <2,000ha                  | 4                                                                            | 4      | 3      | 2    |  |  |  |  |  |
| 2,000-5,500ha             | 4                                                                            | 4      | 3      | 2    |  |  |  |  |  |
| 5,500-15,000ha            | 4                                                                            | 3      | 2      | 1    |  |  |  |  |  |
| 15,000-55,000ha           | 3                                                                            | 2      | 2      | 1    |  |  |  |  |  |
| >55,000ha                 | 2                                                                            | 2      | 1      | 1    |  |  |  |  |  |

Old growth forest (type 1) reservation index (field [OG1\_resndx])

| IBRA<br>conservation<br>status | Reserved to<br>target | <10% short<br>of target | 10-30%<br>short of<br>target | 30-50%<br>short of<br>target | >50% short<br>of target |
|--------------------------------|-----------------------|-------------------------|------------------------------|------------------------------|-------------------------|
| Not threatened                 | 0                     | 1                       | 2                            | 3                            | 3                       |
| Rare                           | 0                     | 1                       | 2                            | 3                            | 3                       |
| Depleted                       | 0                     | 2                       | 3                            | 4                            | 4                       |
| Rare and<br>Depleted           | 0                     | 2                       | 3                            | 4                            | 4                       |

Old growth forest (type 2) reservation index (field [OG2\_resndx])

| IBRA conservation | Type 1 | Type 1    | Type 1 10-<br>30% short | Type 1 30-<br>50% short | Type 1    |
|-------------------|--------|-----------|-------------------------|-------------------------|-----------|
| growth            | target | of target | of target               | of target               | of target |
| Not threatened    | 0      | 0         | 0                       | 0                       | 0         |
| Rare              | 0      | 1         | 2                       | 3                       | 4         |
| Depleted          | 0      | 1         | 2                       | 3                       | 4         |
| Rare and Depleted | 0      | 2         | 2                       | 3                       | 4         |

## ATTACHMENT 6. SPECIES HABITAT MODELLING RULES AND INDICATOR ATTRIBUTES

See separate document.

# ATTACHMENT 7. MODELLING RULES FOR SPECIES ATTRIBUTED FROM SPECIES-SPECIFIC HABITAT PARAMETERS

See separate document.

# ATTACHMENT 8. VEGETATION CLASSIFICATION OF THE REM AND HCV INDICATORS

### Key

RFA code – RFA code for forest community mapping.

- *RFA community* Name of the RFA forest community used for HCV analysis of conservation and reservation status. This code matches to the nearest RFA-equivalent community for forests, and may include a number of Tasveg communities
- REM code Tasveg code used for standard REM indicators.
- REM community Name of the Tasveg community used for the standard REM indicators.
- *Vegetation type* Vegetation types are: (F)orest, (N)ative non-forest, (I)nduced vegetation types, (C)leared land, (O)ther (rocks, sand, mud) and NA errors in mapping.
- *Old growth* Old growth codes are (Y)es for forests that have a recognised old growth form, (N)o for forests without a recognised old growth form, and Z for all non-forest vegetation.
- *Threatened community* Vegetation communities listed under the *EPBC Act 1999* or *Nature Conservation Act 2002*.
- *Tasveg code* Tasveg code for the community as mapped. This is the list of codes used in the REM field [Vegcom\_usZ].

*Tasveg community* – Name of the Tasveg community as mapped.

*Notes* – Additional information on the treatment of the community.

| RFA<br>code | RFA<br>community                                         | REM<br>code | REM community                                        | Vegetation<br>type | Old<br>growth | Threatened community | Tasveg<br>code | Tasveg community                                     | Notes                           |
|-------------|----------------------------------------------------------|-------------|------------------------------------------------------|--------------------|---------------|----------------------|----------------|------------------------------------------------------|---------------------------------|
| na          | na                                                       | AUS         | Saltmarsh<br>(undifferentiated)                      | N                  | Z             |                      | ARS            | Saline grassland                                     | Not<br>systematically<br>mapped |
| na          | na                                                       | AUS         | Saltmarsh<br>(undifferentiated)                      | N                  | Z             |                      | ASS            | Succulent saline herbland                            | Not<br>systematically<br>mapped |
| na          | na                                                       | AUS         | Saltmarsh<br>(undifferentiated)                      | N                  | Z             |                      | AUS            | Saltmarsh<br>(undifferentiated)                      |                                 |
| na          | na                                                       | AWU         | Wetland<br>(undifferentiated)                        | N                  | Z             | NCA                  | AHF            | Fresh water aquatic<br>herbland                      | Not<br>systematically<br>mapped |
| na          | na                                                       | AWU         | Wetland<br>(undifferentiated)                        | N                  | Z             | NCA                  | AHL            | Lacustrine herbland                                  | Not<br>systematically<br>mapped |
| na          | na                                                       | AWU         | Wetland<br>(undifferentiated)                        | N                  | Z             | NCA                  | AHS            | Saline aquatic herbland                              | Not<br>systematically<br>mapped |
| na          | na                                                       | AWU         | Wetland<br>(undifferentiated)                        | N                  | Z             | NCA                  | ASF            | Fresh water aquatic sedgeland and rushland           | Not<br>systematically<br>mapped |
| na          | na                                                       | AWU         | Wetland<br>(undifferentiated)                        | N                  | Z             | NCA                  | AWU            | Wetland<br>(undifferentiated)                        |                                 |
| AC          | Coastal <i>E.</i><br>amygdalina<br>sclerophyll<br>forest | DAC         | <i>E. amygdalina</i> coastal forest and woodland     | F                  | Y             |                      | DAC            | <i>E. amygdalina</i> coastal forest and woodland     |                                 |
| AD          | <i>E. amygdalina</i><br>forest on<br>dolerite            | DAD         | <i>E. amygdalina</i> forest and woodland on dolerite | F                  | Y             |                      | DAD            | <i>E. amygdalina</i> forest and woodland on dolerite |                                 |

| RFA<br>code | RFA<br>community                                            | REM<br>code | REM community                                                               | Vegetation<br>type | Old<br>growth | Threatened community | Tasveg<br>code | Tasveg community                                                            | Notes                                                                           |
|-------------|-------------------------------------------------------------|-------------|-----------------------------------------------------------------------------|--------------------|---------------|----------------------|----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| AM          | <i>E. amygdalina</i><br>forest on<br>mudstone               | DAM         | <i>E. amygdalina</i> forest and woodland on mudstone                        | F                  | Y             |                      | DAM            | <i>E. amygdalina</i> forest and woodland on mudstone                        |                                                                                 |
| AS          | <i>E. amygdalina</i><br>forest on<br>sandstone              | DAS         | <i>E. amygdalina</i> forest and woodland on sandstone                       | F                  | Y             | NCA                  | DAS            | <i>E. amygdalina</i> forest and woodland on sandstone                       |                                                                                 |
| AIC         | <i>E. amygdalina</i><br>forest on<br>Cainozoic<br>sediments | DAZ         | <i>E. amygdalina</i> inland<br>forest and woodland on<br>Cainozoic deposits | F                  | Y             | NCA                  | DAZ            | <i>E. amygdalina</i> inland<br>forest and woodland on<br>Cainozoic deposits |                                                                                 |
| С           | <i>E. coccifera</i><br>forest                               | DCO         | <i>E. coccifera</i> forest and<br>woodland<br>(undifferentiated)            | F                  | Y             |                      | DCO            | <i>E. coccifera</i> forest and woodland                                     |                                                                                 |
| С           | <i>E. coccifera</i><br>forest                               | DCO         | <i>E. coccifera</i> forest and woodland (undifferentiated)                  | F                  | Y             |                      | DGW            | <i>E. gunnii</i> woodland                                                   |                                                                                 |
| D           | Dry <i>E.</i><br><i>delegatensis</i><br>forest              | DDE         | <i>E. delegatensis</i> dry forest<br>and woodland<br>(undifferentiated)     | F                  | Y             |                      | DCR            | <i>E. cordata</i> forest                                                    | Follows RFA classification                                                      |
| D           | Dry E.<br>delegatensis<br>forest                            | DDE         | <i>E. delegatensis</i> dry forest<br>and woodland<br>(undifferentiated)     | F                  | γ             |                      | (DDA)          | <i>E. dalrympleana</i> forest                                               | Not a Tasveg<br>community.<br>Available in NRP<br>mapping in<br>selected areas. |
| D           | Dry E.<br><i>delegatensis</i><br>forest                     | DDE         | <i>E. delegatensis</i> dry forest<br>and woodland<br>(undifferentiated)     | F                  | Y             |                      | DDE            | <i>E. delegatensis</i> dry forest and woodland                              |                                                                                 |
| GG          | Grassy <i>E.</i><br><i>globulus</i> forest                  | DGL         | <i>E. globulus</i> dry forest and woodland                                  | F                  | Y             |                      | DGL            | <i>E. globulus</i> dry forest and woodland                                  |                                                                                 |

| RFA  | RFA<br>                                                | REM  | REM community                                                           | Vegetation | Old    | Threatened | Tasveg | Tasveg community Notes                                              |
|------|--------------------------------------------------------|------|-------------------------------------------------------------------------|------------|--------|------------|--------|---------------------------------------------------------------------|
| code | community                                              | code |                                                                         | type       | growth | community  | code   |                                                                     |
| MO   | <i>E. morrisbyi</i><br>forest                          | DMO  | <i>E. morrisbyi</i> forest and woodland                                 | F          | N      | NCA        | DMO    | <i>E. morrisbyi</i> forest and woodland                             |
| NF   | Furneaux <i>E.</i><br><i>nitida</i> forest             | DNF  | <i>E. nitida</i> Furneaux forest                                        | F          | N      |            | DNF    | <i>E. nitida</i> Furneaux forest                                    |
| N    | <i>E. nitida</i> dry<br>forest                         | DNI  | <i>E. nitida</i> dry forest and woodland                                | F          | Y      |            | DNI    | <i>E. nitida</i> dry forest and woodland                            |
| 0    | <i>E. obliqua</i> dry<br>forest                        | DOB  | <i>E. obliqua</i> dry forest and woodland                               | F          | Y      |            | DOB    | <i>E. obliqua</i> dry forest and woodland                           |
| OV   | Shrubby E.<br>ovata – E.<br>viminalis forest           | DOV  | <i>E. ovata</i> forest and woodland (undifferentiated)                  | F          | Y      | NCA        | DMW    | Midlands woodland<br>complex                                        |
| OV   | Shrubby E.<br>ovata – E.<br>viminalis forest           | DOV  | <i>E. ovata</i> forest and woodland (undifferentiated)                  | F          | Y      | NCA        | DOV    | <i>E. ovata</i> forest and woodland                                 |
| OV   | Shrubby E.<br>ovata – E.<br>viminalis forest           | DOV  | <i>E. ovata</i> forest and woodland (undifferentiated)                  | F          | Y      | NCA        | DOW    | <i>E. ovata</i> heathy woodland                                     |
| PJ   | <i>E. pauciflora</i><br>forest on<br>Jurassic dolerite | DPD  | <i>E. pauciflora</i> forest and woodland on dolerite (undifferentiated) | F          | Y      |            | DDP    | <i>E. dalrympleana - E.<br/>pauciflora</i> forest and<br>woodland   |
| PJ   | <i>E. pauciflora</i><br>forest on<br>Jurassic dolerite | DPD  | <i>E. pauciflora</i> forest and woodland on dolerite (undifferentiated) | F          | Y      |            | DPD    | <i>E. pauciflora</i> forest and woodland on dolerite                |
| PS   | <i>E. pauciflora</i><br>forest on other<br>substrates  | DPO  | <i>E. pauciflora</i> forest and woodland not on dolerite substrates     | F          | Y      |            | DPO    | <i>E. pauciflora</i> forest and woodland not on dolerite substrates |

| RFA  | RFA                                                                                            | REM  | REM community                                                            | Vegetation | Old    | Threatened | Tasveg | Tasveg community                                                | Notes                      |
|------|------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------|------------|--------|------------|--------|-----------------------------------------------------------------|----------------------------|
| code | community                                                                                      | code |                                                                          | type       | growth | community  | code   |                                                                 |                            |
| Ρ    | E. pulchella – E.<br>globulus – E.<br>viminalis grassy<br>shrubby dry<br>sclerophyll<br>forest | DPU  | <i>E. pulchella</i> forest and<br>woodland<br>(undifferentiated)         | F          | Y      |            | DPU    | <i>E. pulchella</i> forest and woodland                         |                            |
| RI   | <i>E. risdonii</i> forest                                                                      | DRI  | <i>E. risdonii</i> forest and woodland                                   | F          | Y      | NCA        | DRI    | <i>E. risdonii</i> forest and woodland                          |                            |
| RO   | <i>E. rodwayi</i><br>forest                                                                    | DRO  | <i>E. rodwayi</i> forest and woodland                                    | F          | Y      |            | DRO    | <i>E. rodwayi</i> forest and woodland                           |                            |
| DSC  | E. viminalis – E.<br>ovata – E.<br>amygdalina – E.<br>obliqua damp<br>sclerophyll<br>forest    | DSC  | <i>E. amygdalina - E. obliqua</i><br>damp sclerophyll forest             | F          | Y      |            | DSC    | <i>E. amygdalina - E. obliqua</i><br>damp sclerophyll forest    |                            |
| SG   | <i>E. sieberi</i> forest on granite                                                            | DSG  | <i>E. sieberi</i> forest and woodland on granite                         | F          | Y      |            | DSG    | <i>E. sieberi</i> forest and woodland on granite                |                            |
| SO   | <i>E. sieberi</i> forest<br>on other<br>substrates                                             | DSO  | <i>E. sieberi</i> forest and woodland not on granite substrates          | F          | Υ      |            | DSO    | <i>E. sieberi</i> forest and woodland not on granite substrates |                            |
| TD   | <i>E. tenuiramis</i><br>forest on<br>dolerite                                                  | DTD  | <i>E. tenuiramis</i> forest and woodland on dolerite                     | F          | Y      |            | DTD    | <i>E. tenuiramis</i> forest and woodland on dolerite            |                            |
| Т    | <i>E. tenuiramis</i><br>forest on<br>granite                                                   | DTG  | <i>E. tenuiramis</i> forest and woodland on granite                      | F          | Y      |            | DTG    | <i>E. tenuiramis</i> forest and woodland on granite             |                            |
| TI   | Inland <i>E.</i><br><i>tenuiramis</i><br>forest                                                | DTO  | <i>E. tenuiramis</i> forest and woodland on sediments (undifferentiated) | F          | N      | NCA        | DPE    | <i>E. perriniana</i> forest and woodland                        | Follows RFA classification |

| RFA<br>code | RFA<br>community                                                                               | REM<br>code | REM community                                                            | Vegetation<br>type | Old<br>growth | Threatened community | Tasveg<br>code | Tasveg community                                                    | Notes                                                            |
|-------------|------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|--------------------|---------------|----------------------|----------------|---------------------------------------------------------------------|------------------------------------------------------------------|
| TI          | Inland <i>E.</i><br><i>tenuiramis</i><br>forest                                                | DTO         | <i>E. tenuiramis</i> forest and woodland on sediments (undifferentiated) | F                  | Y             | NCA                  | DTO            | <i>E. tenuiramis</i> forest and woodland on sediments               |                                                                  |
| G           | E. viminalis<br>and/or E.<br>globulus coastal<br>shrubby forest                                | DVC         | <i>E. viminalis - E. globulus</i><br>coastal forest and<br>woodland      | F                  | Y             | NCA                  | DVC            | <i>E. viminalis - E. globulus</i><br>coastal forest and<br>woodland |                                                                  |
| VF          | Furneaux <i>E.</i><br><i>viminalis</i> forest                                                  | DVF         | <i>E. viminalis</i> Furneaux forest and woodland                         | F                  | N             | NCA                  | DVF            | <i>E. viminalis</i> Furneaux forest and woodland                    |                                                                  |
| Ρ           | E. pulchella – E.<br>globulus – E.<br>viminalis grassy<br>shrubby dry<br>sclerophyll<br>forest | DPU         | <i>E. pulchella</i> forest and<br>woodland<br>(undifferentiated)         | F                  | Ν             |                      | DBA            | <i>E. barberi</i> forest and woodland                               | Follows RFA classification                                       |
| V           | E. viminalis<br>grassy forest                                                                  | DVG         | <i>E. viminalis</i> grassy forest<br>and woodland<br>(undifferentiated)  | F                  | Y             |                      | DVG            | <i>E. viminalis</i> grassy forest and woodland                      |                                                                  |
| V           | <i>E. viminalis</i><br>grassy forest                                                           | DVG         | <i>E. viminalis</i><br>shrubby/heathy<br>woodland                        | F                  | Υ             |                      | DVS            | <i>E. viminalis</i><br>shrubby/heathy<br>woodland                   |                                                                  |
| na          | na                                                                                             | GCL         | Lowland grassland complex                                                |                    | Z             |                      | GCL            | Lowland grassland complex                                           | Mostly exists as<br>an induced form<br>of degraded<br>woodlands. |
| na          | na                                                                                             | GHC         | Coastal grass and<br>herbfield                                           | N                  | Z             |                      | GHC            | Coastal grass and<br>herbfield                                      |                                                                  |
| na          | na                                                                                             | GPH         | Highland Poa grassland                                                   | Ν                  | Z             |                      | GPH            | Highland Poa grassland                                              |                                                                  |

| RFA  | RFA       | REM  | REM community                                  | Vegetation | Old    | Threatened | Tasveg | Tasveg community                               | Notes                                                                                                                         |
|------|-----------|------|------------------------------------------------|------------|--------|------------|--------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| code | community | code |                                                | type       | growth | community  | code   |                                                |                                                                                                                               |
| na   | na        | GPL  | Lowland <i>Poa labillardierei</i><br>grassland | N, I       | Z      | EPBC       | GPL    | Lowland <i>Poa labillardierei</i><br>grassland | Much of the<br>current extent is<br>induced from<br>degraded<br>woodlands, with<br>pre-European<br>extent largely<br>cleared  |
| na   | na        | GRP  | Rockplate grassland                            | Ν          | Z      |            | GRP    | Rockplate grassland                            |                                                                                                                               |
| na   | na        | GSL  | Lowland sedgy grassland                        | N          | Z      |            | GSL    | Lowland sedgy grassland                        |                                                                                                                               |
| na   | na        | GTL  | Lowland <i>Themeda</i><br>grassland            | N, I       | Z      | EPBC       | GTL    | Lowland <i>Themeda</i><br>grassland            | Much of the<br>current extent is<br>induced from<br>degraded<br>woodlands, with<br>pre-European<br>extent largely<br>cleared. |
| na   | na        | НСН  | Alpine coniferous<br>heathland                 | Ν          | Z      |            | НСН    | Alpine coniferous<br>heathland                 |                                                                                                                               |
| na   | na        | HCM  | Cushion moorland                               | N          | Z      | NCA        | HCM    | Cushion moorland                               |                                                                                                                               |
| na   | na        | HHE  | Eastern alpine heathland                       | N          | Z      |            | HHE    | Eastern alpine heathland                       |                                                                                                                               |
| na   | na        | HHW  | Western alpine heathland                       | N          | Z      |            | HHW    | Western alpine heathland                       |                                                                                                                               |
| na   | na        | HSE  | Eastern alpine sedgeland                       | N          | Z      |            | HSE    | Eastern alpine sedgeland                       |                                                                                                                               |
| na   | na        | HSW  | Western alpine<br>sedgeland/herbland           | N          | Z      |            | HSW    | Western alpine<br>sedgeland/herbland           |                                                                                                                               |
| na   | na        | HUE  | Eastern alpine vegetation (undifferentiated)   | Ν          | Z      |            | HUE    | Eastern alpine vegetation (undifferentiated)   |                                                                                                                               |
| na   | na        | MAP  | Alkaline pans                                  | N          | Z      | NCA        | MAP    | Alkaline pans                                  |                                                                                                                               |

| RFA<br>code | RFA<br>community                 | REM<br>code | REM community                                            | Vegetation<br>type | Old<br>growth | Threatened community | Tasveg<br>code | Tasveg community                                         | Notes                                                                      |
|-------------|----------------------------------|-------------|----------------------------------------------------------|--------------------|---------------|----------------------|----------------|----------------------------------------------------------|----------------------------------------------------------------------------|
| na          | na                               | MBE         | Eastern buttongrass moorland                             | N                  | Z             |                      | MBE            | Eastern buttongrass<br>moorland                          |                                                                            |
| na          | na                               | MBP         | Pure buttongrass moorland                                | Ν                  | Z             |                      | MBP            | Pure buttongrass<br>moorland                             |                                                                            |
| na          | na                               | MBR         | Sparse buttongrass moorland on slopes                    | N                  | Z             |                      | MBR            | Sparse buttongrass moorland on slopes                    |                                                                            |
| na          | na                               | MBS         | Buttongrass moorland with emergent shrubs                | N                  | Z             |                      | MBS            | Buttongrass moorland with emergent shrubs                |                                                                            |
| na          | na                               | MBU         | Buttongrass moorland<br>(undifferentiated)               | N                  | Z             |                      | MBU            | Buttongrass moorland<br>(undifferentiated)               |                                                                            |
| na          | na                               | MBW         | Western buttongrass moorland                             | N                  | Z             |                      | MBW            | Western buttongrass moorland                             |                                                                            |
| na          | na                               | MDS         | Subalpine <i>Diplarrena</i><br><i>latifolia</i> rushland | N                  | Z             |                      | MDS            | Subalpine <i>Diplarrena</i><br><i>latifolia</i> rushland |                                                                            |
| na          | na                               | MGH         | Highland grassy sedgeland                                | N                  | Z             | NCA                  | MGH            | Highland grassy sedgeland                                |                                                                            |
| na          | na                               | MRR         | Restionaceae rushland                                    | Ν                  | Z             |                      | MRR            | Restionaceae rushland                                    |                                                                            |
| na          | na                               | MSP         | Sphagnum peatland                                        | N                  | Z             | EPBC, NCA            | MSP            | Sphagnum peatland                                        |                                                                            |
| na          | na                               | MSW         | Western lowland sedgeland                                | Ν                  | Z             |                      | MSW            | Western lowland sedgeland                                |                                                                            |
| SI          | <i>Acacia dealbata</i><br>forest | NAD         | <i>Acacia dealbata</i> forest                            | F                  | N             |                      | NAD            | <i>Acacia dealbata</i> forest                            |                                                                            |
| BF          | A. melanoxylon on flats          | NAF         | Acacia melanoxylon<br>swamp forest                       | F                  | N             |                      | NAF            | Acacia melanoxylon<br>swamp forest                       |                                                                            |
| na          | na                               | NAL         | <i>Allocasuarina littoralis</i><br>forest                | N                  | Ν             | NCA                  | NAL            | <i>Allocasuarina littoralis</i><br>forest                | This community<br>does not<br>translate readily<br>to an RFA<br>equivalent |
| RFA<br>code | RFA<br>community                                                      | REM<br>code | REM community                                                           | Vegetation<br>type | Old<br>growth | Threatened community | Tasveg<br>code | Tasveg community                                                        | Notes                                                                                   |
|-------------|-----------------------------------------------------------------------|-------------|-------------------------------------------------------------------------|--------------------|---------------|----------------------|----------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| BR          | <i>A. melanoxylon</i> on rises                                        | NAR         | <i>Acacia melanoxylon</i> on<br>rises                                   | F                  | N             |                      | NAR            | <i>Acacia melanoxylon</i> on<br>rises                                   |                                                                                         |
| AV          | Allocasuarina<br>verticillata<br>forest                               | NAV         | <i>Allocasuarina verticillata</i><br>forest                             | F                  | Y             |                      | NAV            | <i>Allocasuarina verticillata</i><br>forest                             |                                                                                         |
| na          | na                                                                    | NBA         | <i>Bursaria - Acacia</i><br>woodland and scrub                          | N, I               | Ν             |                      | NBA            | <i>Bursaria - Acacia</i><br>woodland and scrub                          | Much of this<br>community<br>induced from<br>degradation of<br>woodland<br>communities. |
| BS          | <i>Banksia serrata</i><br>woodland                                    | NBS         | <i>Banksia serrata</i> woodland                                         | F                  | Y             | NCA                  | NBS            | <i>Banksia serrata</i> woodland                                         |                                                                                         |
| CR          | Callitris<br>rhomboidea<br>forest                                     | NCR         | <i>Callitris rhomboidea</i><br>forest                                   | F                  | Y             | NCA                  | NCR            | <i>Callitris rhomboidea</i><br>forest                                   |                                                                                         |
| na          | na                                                                    | NLA         | <i>Leptospermum scoparium</i><br>- Acacia mucronata forest              | N                  | N             |                      | NLA            | <i>Leptospermum scoparium</i><br>- Acacia mucronata forest              |                                                                                         |
| na          | na                                                                    | NLE         | Leptospermum forest                                                     | N                  | N             |                      | NLE            | Leptospermum forest                                                     |                                                                                         |
| L           | Leptospermum<br>lanigerum -<br>Melaleuca<br>squarrosa<br>swamp forest | NLM         | <i>Leptospermum lanigerum<br/>- Melaleuca squarrosa</i><br>swamp forest | F                  | Y             |                      | NLM            | <i>Leptospermum lanigerum<br/>- Melaleuca squarrosa</i><br>swamp forest |                                                                                         |
| na          | na                                                                    | NLN         | Subalpine <i>Leptospermum</i><br><i>nitidum</i> woodland                | N                  | N             |                      | NLN            | Subalpine <i>Leptospermum</i><br>nitidum woodland                       |                                                                                         |
| ME          | <i>Melaleuca</i><br><i>ericifolia</i><br>swamp forest                 | NME         | <i>Melaleuca ericifolia</i><br>swamp forest                             | F                  | Y             | NCA                  | NME            | <i>Melaleuca ericifolia</i><br>swamp forest                             |                                                                                         |

| RFA<br>code | RFA<br>community                                                 | REM<br>code | REM community                                                          | Vegetation<br>type | Old<br>growth | Threatened community | Tasveg<br>code | Tasveg community Notes                                                     |
|-------------|------------------------------------------------------------------|-------------|------------------------------------------------------------------------|--------------------|---------------|----------------------|----------------|----------------------------------------------------------------------------|
| NP          | Notolaea<br>ligustrina<br>and/or<br>Pomaderris<br>apetala forest | NNP         | Notelaea - Pomaderris -<br>Beyeria forest                              | F                  | Y             | NCA                  | NNP            | Notelaea - Pomaderris -<br>Beyeria forest                                  |
| na          | na                                                               | RFE         | Rainforest fernland                                                    | N                  | Ν             | NCA                  | RFE            | Rainforest fernland                                                        |
| Н           | Huon pine                                                        | RHP         | Lagarostrobos franklinii rainforest and scrub                          | F                  | Y             |                      | RHP            | Lagarostrobos franklinii<br>rainforest and scrub                           |
| F           | King Billy pine<br>with deciduous<br>beech                       | RKF         | Athrotaxis selaginoides -<br>Nothofagus gunnii short<br>rainforest     | F                  | Y             | NCA                  | RKF            | <i>Athrotaxis selaginoides -<br/>Nothofagus gunnii</i> short<br>rainforest |
| F           | King Billy pine<br>with deciduous<br>beech                       | RKF         | <i>Nothofagus gunnii</i><br>rainforest and scrub                       | F                  | N             |                      | RFS            | Nothofagus gunnii<br>rainforest and scrub                                  |
| Х           | King Billy pine                                                  | RKP         | Athrotaxis selaginoides rainforest                                     | F                  | Y             | NCA                  | RKP            | Athrotaxis selaginoides<br>rainforest                                      |
| Х           | King Billy pine                                                  | RKP         | Athrotaxis selaginoides subalpine scrub                                | F                  | Y             | NCA                  | RKS            | <i>Athrotaxis selaginoides</i><br>subalpine scrub                          |
| Х           | King Billy pine                                                  | RKP         | Highland rainforest scrub<br>with dead Athrotaxis<br>selaginoides      | F                  | N             |                      | RKX            | Highland rainforest scrub<br>with dead Athrotaxis<br>selaginoides          |
| na          | na                                                               | RLS         | Leptospermum with rainforest scrub                                     | N                  | N             |                      | RLS            | <i>Leptospermum</i> with rainforest scrub                                  |
| M-          | Short rainforest                                                 | RMS         | Nothofagus -<br>Leptospermum short<br>rainforest<br>(undifferentiated) | F                  | Y             |                      | RCO            | Coastal rainforest                                                         |

| RFA  | RFA                                    | REM  | REM community                                                          | Vegetation | Old    | Threatened | Tasveg | Tasveg community Notes                                           |
|------|----------------------------------------|------|------------------------------------------------------------------------|------------|--------|------------|--------|------------------------------------------------------------------|
| code | community                              | code |                                                                        | туре       | growth | community  | code   |                                                                  |
| M-   | Short rainforest                       | RMS  | Nothofagus -<br>Leptospermum short<br>rainforest<br>(undifferentiated) | F          | Y      |            | RML    | Nothofagus -<br>Leptospermum short<br>rainforest                 |
| M-   | Short rainforest                       | RMS  | <i>Nothofagus / Phyllocladus</i> short rainforest                      | F          | Y      |            | RMS    | <i>Nothofagus / Phyllocladus</i><br>short rainforest             |
| M+   | Tall rainforest                        | RMT  | Nothofagus -<br>Atherosperma rainforest                                | F          | Y      |            | RMT    | Nothofagus -<br>Atherosperma rainforest                          |
| PD   | Pencil pine with<br>deciduous<br>beech | RPF  | Athrotaxis<br>cupressoides/Nothofagus<br>gunnii short rainforest       | F          | Y      | NCA        | RPF    | Athrotaxis<br>cupressoides/Nothofagus<br>gunnii short rainforest |
| PP   | Pencil pine                            | RPP  | Athrotaxis cupressoides<br>rainforest<br>(undifferentiated)            | F          | Y      | NCA        | RPP    | Athrotaxis cupressoides<br>rainforest                            |
| PP   | Pencil pine                            | RPP  | Athrotaxis cupressoides<br>rainforest<br>(undifferentiated)            | F          | Y      | NCA        | RPW    | Athrotaxis cupressoides<br>open woodland                         |
| na   | na                                     | RSH  | Highland low rainforest and scrub                                      | N          | N      |            | RSH    | Highland low rainforest<br>and scrub                             |
| na   | na                                     | SAC  | <i>Acacia longifolia</i> coastal scrub                                 | N          | Z      |            | SAC    | <i>Acacia longifolia</i> coastal<br>scrub                        |
| na   | na                                     | SBM  | <i>Banksia marginata</i> wet<br>scrub                                  | N          | Z      | NCA        | SBM    | <i>Banksia marginata</i> wet<br>scrub                            |
| na   | na                                     | SBR  | Broadleaf scrub                                                        | N          | Z      |            | SBR    | Broadleaf scrub                                                  |
| na   | na                                     | SCA  | Coastal scrub on alkaline sands                                        | N          | Z      |            | SCA    | Coastal scrub on alkaline sands                                  |
| na   | na                                     | SCH  | Coastal heathland                                                      | N          | Z      |            | SCH    | Coastal heathland                                                |
| na   | na                                     | SCK  | Coastal complex on King<br>Island                                      | N          | Z      | NCA        | SCK    | Coastal complex on King<br>Island                                |

| RFA<br>code | RFA<br>community                | REM<br>code | REM community                                | Vegetation<br>type | Old<br>growth | Threatened community | Tasveg<br>code | Tasveg community                             | Notes |
|-------------|---------------------------------|-------------|----------------------------------------------|--------------------|---------------|----------------------|----------------|----------------------------------------------|-------|
| na          | na                              | SCW         | Heathland scrub complex at Wingaroo          | N                  | Z             | NCA                  | SCW            | Heathland scrub complex at Wingaroo          |       |
| na          | na                              | SDU         | Dry scrub                                    | N                  | Z             |                      | SDU            | Dry scrub                                    |       |
| na          | na                              | SHC         | Heathland on calcarenite                     | N                  | Z             | NCA                  | SHC            | Heathland on calcarenite                     |       |
| na          | na                              | SHF         | Heathland scrub mosaic<br>on Flinders Island | N                  | Z             |                      | SHF            | Heathland scrub mosaic<br>on Flinders Island |       |
| na          | na                              | SHG         | Heathland on granite                         | N                  | Z             |                      | SHG            | Heathland on granite                         |       |
| na          | na                              | SHL         | Lowland sedgy heathland                      | N                  | Z             |                      | SHL            | Lowland sedgy heathland                      |       |
| na          | na                              | SHS         | Subalpine heathland                          | N                  | Z             |                      | SHS            | Subalpine heathland                          |       |
| na          | na                              | SHU         | Inland Heathland<br>(undifferentiated)       | N                  | Z             |                      | SHU            | Inland Heathland<br>(undifferentiated)       |       |
| na          | na                              | SHW         | Wet heathland                                | N                  | Z             |                      | SHW            | Wet heathland                                |       |
| na          | na                              | SLW         | Wet heathland                                | N                  | Z             |                      | SLW            | Wet heathland                                |       |
| na          | na                              | SMM         | <i>Melaleuca squamea</i><br>heathland        | N                  | Z             |                      | SMM            | <i>Melaleuca squamea</i><br>heathland        |       |
| na          | na                              | SMP         | <i>Melaleuca pustulata</i><br>scrub          | N                  | Z             | NCA                  | SMP            | <i>Melaleuca pustulata</i><br>scrub          |       |
| na          | na                              | SMR         | <i>Melaleuca squarrosa</i><br>scrub          | N                  | Z             |                      | SMR            | <i>Melaleuca squarrosa</i><br>scrub          |       |
| na          | na                              | SRC         | Seabird rookery complex                      | N                  | Z             | NCA                  | SRC            | Seabird rookery complex                      |       |
| na          | na                              | SRI         | Riparian scrub                               | N                  | Z             | NCA                  | SRI            | Riparian scrub                               |       |
| na          | na                              | SSC         | Coastal Scrub                                | N                  | Z             |                      | SSC            | Coastal Scrub                                |       |
| na          | na                              | SSK         | Scrub complex on King<br>Island              | N                  | Z             |                      | SSK            | Scrub complex on King<br>Island              |       |
| na          | na                              | SSW         | Western subalpine scrub                      | N                  | Z             |                      | SSW            | Western subalpine scrub                      |       |
| na          | na                              | SWW         | Western wet scrub                            | N                  | Z             |                      | SWW            | Western wet scrub                            |       |
| BA          | <i>E. brookeriana</i><br>forest | WBR         | <i>E. brookeriana</i> wet forest             | F                  | Y             | NCA                  | WBR            | <i>E. brookeriana</i> wet forest             |       |

| RFA  | RFA                                                                        | REM  | REM community                                        | Vegetation | Old    | Threatened | Tasveg | Tasveg community                                     | Notes                                                              |
|------|----------------------------------------------------------------------------|------|------------------------------------------------------|------------|--------|------------|--------|------------------------------------------------------|--------------------------------------------------------------------|
| code | community                                                                  | code |                                                      | type       | growth | community  | code   |                                                      |                                                                    |
| DT   | Tall <i>E.</i><br><i>delegatensis</i><br>forest                            | WDU  | <i>E. delegatensis</i> wet forest (undifferentiated) | F          | Y      |            | WDA    | <i>E. dalrympleana</i> forest                        | Not<br>systematically<br>mapped                                    |
| DT   | Tall <i>E.</i><br><i>delegatensis</i><br>forest                            | WDU  | <i>E. delegatensis</i> wet forest (undifferentiated) | F          | Y      |            | WDB    | <i>E. delegatensis</i> forest with broadleaf shrubs  | Not<br>systematically<br>mapped                                    |
| DT   | Tall E.<br>delegatensis<br>forest                                          | WDU  | <i>E. delegatensis</i> wet forest (undifferentiated) | F          | Y      |            | WDL    | <i>E. delegatensis</i> forest over Leptospermum      | Not<br>systematically<br>mapped                                    |
| DT   | Tall <i>E.</i><br><i>delegatensis</i><br>forest                            | WDU  | <i>E. delegatensis</i> wet forest (undifferentiated) | F          | Y      |            | WDR    | <i>E. delegatensis</i> forest over rainforest        | Not<br>systematically<br>mapped                                    |
| DT   | Tall E.<br>delegatensis<br>forest                                          | WDU  | <i>E. delegatensis</i> wet forest (undifferentiated) | F          | Y      |            | WDU    | <i>E. delegatensis</i> wet forest (undifferentiated) |                                                                    |
| KG   | King Island E.<br>globulus – E.<br>brookeriana –<br>E. viminalis<br>forest | WGK  | King Island Eucalypt<br>woodland                     | F          | Ν      | NCA        | DKW    | King Island Eucalypt<br>woodland                     | RFA classified all<br>eucalypt forest<br>on King Island as<br>WGK. |
| KG   | King Island E.<br>globulus – E.<br>brookeriana –<br>E. viminalis<br>forest | WGK  | <i>E. globulus</i> King Island forest                | F          | Ν      | NCA        | WGK    | <i>E. globulus</i> King Island forest                |                                                                    |
| NT   | <i>E. nitida</i> wet<br>forest                                             | WNU  | <i>E. nitida</i> wet forest<br>(undifferentiated)    | F          | Y      |            | WNL    | <i>E. nitida</i> forest over<br>Leptospermum         | Not<br>systematically<br>mapped                                    |

| RFA  | RFA                                      | REM  | REM community                                      | Vegetation | Old    | Threatened | Tasveg | Tasveg community                                | Notes                           |
|------|------------------------------------------|------|----------------------------------------------------|------------|--------|------------|--------|-------------------------------------------------|---------------------------------|
| code | community                                | code |                                                    | type       | growth | community  | code   |                                                 |                                 |
| NT   | <i>E. nitida</i> wet<br>forest           | WNU  | <i>E. nitida</i> wet forest<br>(undifferentiated)  | F          | Y      |            | WNR    | E. nitida forest over rainforest                | Not<br>systematically<br>mapped |
| NT   | <i>E. nitida</i> wet<br>forest           | WNU  | <i>E. nitida</i> wet forest (undifferentiated)     | F          | Y      |            | WNU    | <i>E. nitida</i> wet forest (undifferentiated)  |                                 |
| ОТ   | <i>E. obliqua</i> tall<br>forest         | WOU  | <i>E. obliqua</i> wet forest<br>(undifferentiated) | F          | Y      |            | WOB    | <i>E. obliqua</i> forest with broadleaf shrubs  | Not<br>systematically<br>mapped |
| ОТ   | <i>E. obliqua</i> tall<br>forest         | WOU  | <i>E. obliqua</i> wet forest<br>(undifferentiated) | F          | Y      |            | WOL    | <i>E. obliqua</i> forest over<br>Leptospermum   | Not<br>systematically<br>mapped |
| ОТ   | <i>E. obliqua</i> tall<br>forest         | WOU  | <i>E. obliqua</i> wet forest<br>(undifferentiated) | F          | Y      |            | WOR    | <i>E. obliqua</i> forest over rainforest        | Not<br>systematically<br>mapped |
| ОТ   | <i>E. obliqua</i> tall forest            | WOU  | <i>E. obliqua</i> wet forest (undifferentiated)    | F          | Y      |            | WOU    | <i>E. obliqua</i> wet forest (undifferentiated) |                                 |
| R    | <i>E. regnans</i><br>forest              | WRE  | <i>E. regnans</i> forest<br>(undifferentiated)     | F          | Y      |            | WGL    | E. globulus wet forest                          | Not<br>systematically<br>mapped |
| R    | <i>E. regnans</i><br>forest              | WRE  | <i>E. regnans</i> forest (undifferentiated)        | F          | Y      |            | WRE    | E. regnans forest                               |                                 |
| SU   | <i>E. subcrenulata</i><br>forest         | WSU  | <i>E. subcrenulata</i> forest and woodland         | F          | Y      |            | WSU    | <i>E. subcrenulata</i> forest and woodland      |                                 |
| VW   | <i>E. viminalis</i> wet forest on basalt | WVI  | <i>E. viminalis</i> wet forest                     | F          | Y      |            | WVI    | <i>E. viminalis</i> wet forest                  |                                 |

| RFA  | RFA       | REM  | REM community                           | Vegetation | Old    | Threatened | Tasveg | Tasveg community                        | Notes                                                                                                                                                                                                    |
|------|-----------|------|-----------------------------------------|------------|--------|------------|--------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| code | community | code |                                         | type       | growth | community  | code   |                                         |                                                                                                                                                                                                          |
| na   | na        | ZZZ  | Dry eucalypt planting                   | Ν          | Ν      |            | DEP    | Dry eucalypt planting                   | DEP is a code<br>used by Natural<br>Resource<br>Planning for<br>mapping areas<br>planted as part<br>of revegetation<br>activities. Only<br>mapped<br>incidentally.                                       |
| na   | na        | ZZZ  | Error                                   | na         | Z      |            | Err    | Error                                   |                                                                                                                                                                                                          |
| na   | na        | ZZZ  | Agricultural land                       | С          | Z      |            | FAG    | Agricultural land                       |                                                                                                                                                                                                          |
| na   | na        | ZZZ  | Exotic tree plantings                   | C          | Ζ      |            | FEP    | Exotic tree plantings                   | FEP is a code use<br>by Natural<br>Resource<br>Planning for<br>mapping areas<br>planted with<br>exotics species<br>but which are<br>not plantations<br>for silviculture.<br>Only mapped<br>incidentally. |
| na   | na        | ZZZ  | Marram grassland                        | С          | Z      |            | FMG    | Marram grassland                        |                                                                                                                                                                                                          |
| na   | na        | ZZZ  | Permanent easements                     | С          | Z      |            | FPE    | Permanent easements                     |                                                                                                                                                                                                          |
| na   | na        | ZZZ  | <i>Pteridium esculentum</i><br>fernland | С          | Z      |            | FPF    | <i>Pteridium esculentum</i><br>fernland |                                                                                                                                                                                                          |
| na   | na        | ZZZ  | Plantations for silviculture            | С          | Z      |            | FPL    | Plantations for silviculture            |                                                                                                                                                                                                          |

| RFA  | RFA       | REM  | REM community                | Vegetation | Old    | Threatened | Tasveg | Tasveg community Notes       |
|------|-----------|------|------------------------------|------------|--------|------------|--------|------------------------------|
| code | community | code |                              | type       | growth | community  | code   |                              |
| na   | na        | ZZZ  | Regenerating cleared land    | C          | Z      |            | FRG    | Regenerating cleared<br>land |
| na   | na        | ZZZ  | Spartina marshland           | С          | Z      |            | FSM    | Spartina marshland           |
| na   | na        | ZZZ  | Extra-urban<br>miscellaneous | С          | Z      |            | FUM    | Extra-urban<br>miscellaneous |
| na   | na        | ZZZ  | Urban areas                  | С          | Z      |            | FUR    | Urban areas                  |
| na   | na        | ZZZ  | Weed infestation             | С          | Z      |            | FWU    | Weed infestation             |
| na   | na        | ZZZ  | Water, sea                   | 0          | Z      |            | OAQ    | Water, sea                   |
| na   | na        | ZZZ  | Rock (lichen lithosere )     | 0          | Z      |            | ORO    | Rock (lichen lithosere )     |
| na   | na        | ZZZ  | Sand, mud                    | 0          | Z      |            | OSM    | Sand, mud                    |
| na   | na        | ZZZ  | Queenstown regrowth mosaic   | I          | Z      |            | SQR    | Queenstown regrowth mosaic   |
| na   | na        | ZZZ  | Unresolved sliver polygon    | na         | Z      |            | ZZZ    | Unresolved sliver polygon    |

## ATTACHMENT 9. VEGETATION COMMUNITIES 'FUZZY' BIOREGIONAL BOUNDARIES AND LOGICAL CONSISTENCY RULES

Notes:

- The term 'as centroid' indicates that the vegetation polygon is assigned to the bioregion in which its centroid is located.

- Vegetation which is retagged as an error ("Err") is assigned a null value and all indicators associated with it are assigned the minimum value for the indicator (1 for REM indicators and 0 for HCV indicators).

| REM<br>code <sup>25</sup> | Vegetation community                                         | Location &/or bioregion of assessed patches                                                                                       | Allocation      | Notes                                                                                                                                                                                                            |
|---------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUS                       | Saltmarsh (undifferentiated)                                 | In Central Highlands, Flinders, King, Northern<br>Midlands, Northern Slopes, South East,<br>Southern Ranges and West.             | As centroid     | No fuzzy bioregion allocations. Saltmarsh<br>may arise due to local conditions and need<br>to be differentiated to assess distribution<br>patterns. Mapping in some regions may be<br>errors.                    |
| AWU                       | Wetland (undifferentiated)                                   | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Midlands, Northern Slopes,<br>South East, Southern Ranges and West. | As centroid     | None. Wetlands may arise due to local<br>conditions and need to be differentiated to<br>assess distribution patterns.                                                                                            |
| DAC                       | <i>Eucalyptus. amygdalina</i> coastal<br>forest and woodland | In Central Highlands on Devonian sandstone<br>(geology code SDs) on Gormanston map.                                               | Retagged to DAS | Mapping as DAC contradicts the CARSAG<br>(2004) rule for E. <i>amygdalina</i> on this<br>geology <sup>26</sup> . May be Tasveg transcription<br>error from old Tasveg code ACs (alpine<br>coniferous heathland). |
| DAC                       | <i>E. amygdalina</i> coastal forest<br>and woodland          | In Northern Midlands on Dilston and<br>Launceston maps.                                                                           | To Ben Lomond   | All are on eastern side of Tamar.                                                                                                                                                                                |

<sup>&</sup>lt;sup>25</sup> See attachment 7.

<sup>&</sup>lt;sup>26</sup> Comprehensive, Adequate & Representative Scientific Advisory Group (2004). Interpretation of the RFA community 'Inland E. amygdalina forest': New community definitions & revised reservation status for E. amygdalina–dominated forest communities across Tasmania. Private Forest Reserves Program, Department of Primary Industries, Water & Environment, Hobart.

| REM<br>code <sup>25</sup> | Vegetation community                                 | Location &/or bioregion of assessed patches                                                                     | Allocation                   | Notes                                                                                                   |
|---------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------|
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Northern Midlands on Exeter map.                                                                             | Retagged to DAD              | ls on dolerite.                                                                                         |
| DAC                       | E. amygdalina coastal forest and woodland            | In Central Highlands on Rowallan map.                                                                           | To Northern Slopes           | Located in valley bottom. CARSAG rule for geology code Lt not appropriate in this location.             |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Central Highlands on Will map.                                                                               | Retagged to HCH              | Probable transposition error from the old Tasveg code of ACS.                                           |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Southern Ranges on Tertiary deposits on Strickland map.                                                      | Retagged to DAD              | These polygons are slope deposits downslope of basalt.                                                  |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Central Highlands & Northern Midlands on Talus on Millers map.                                               | Retagged to DAD              |                                                                                                         |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Ben Lomond, Flinders, King, Northern Slopes,<br>South East, Southern Ranges (Leprena & Cloudy<br>maps only). | As centroid                  |                                                                                                         |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Southern Ranges on dolerite on Lloyd map.                                                                    | Retagged to DAD              |                                                                                                         |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Central Highlands on Rufus map.                                                                              | Retagged to DAD              | Slivers created by the geology mapping.<br>Corrected to likely parent geology in<br>adjoining polygons. |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Southern Ranges on bottom of Bruny Island<br>Neck on Adventure Bay map.                                      | To South East                |                                                                                                         |
| DAC                       | <i>E. amygdalina</i> coastal forest and woodland     | In Northern Midlands in Fingal Valley.                                                                          | To Ben Lomond and South East | Allocated on position relative to valley<br>bottom and slopes leading uphill to<br>bioregion proper.    |
| DAD                       | <i>E. amygdalina</i> forest and woodland on dolerite | In Northern Midlands in Fingal Valley.                                                                          | To Ben Lomond and South East | Allocated on position relative to valley bottom and slopes leading uphill to bioregion proper.          |

| REM<br>code <sup>25</sup> | Vegetation community                                 | Location &/or bioregion of assessed patches                                | Allocation                                                                                  | Notes                                                                                                    |
|---------------------------|------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| DAD                       | <i>E. amygdalina</i> forest and woodland on dolerite | In Northern Midlands near Ben Lomond.                                      | To Ben Lomond                                                                               | Boundary approximated by dolerite land systems contiguous with bioregion boundary                        |
| DAD                       | <i>E. amygdalina</i> forest and woodland on dolerite | In Central Highlands near Northern Midlands.                               | To Northern<br>Midlands                                                                     |                                                                                                          |
| DAD                       | <i>E. amygdalina</i> forest and woodland on dolerite | In West near Southern Ranges on Adamsfield map.                            | To Southern Ranges                                                                          |                                                                                                          |
| DAD                       | <i>E. amygdalina</i> coastal forest<br>and woodland  | In Ben Lomond, Flinders, Northern Slopes,<br>South East & Southern Ranges. | As centroid                                                                                 |                                                                                                          |
| DAD                       | <i>E. amygdalina</i> forest and woodland on dolerite | In Central Highlands near Northern Slopes.                                 | To Northern Slopes                                                                          |                                                                                                          |
| DAM                       | E. <i>amygdalina</i> forest & woodland on mudstone   | In Northern Midlands near Northern Slopes.                                 | To Northern Slopes                                                                          | Does not apply to patches on Cluan and Liffey maps.                                                      |
| DAM                       | E. <i>amygdalina</i> forest & woodland on mudstone   | In Northern Midlands near Ben Lomond.                                      | To Ben Lomond                                                                               |                                                                                                          |
| DAM                       | E. <i>amygdalina</i> forest & woodland on mudstone   | In Central Highlands.                                                      | To nearest adjoining<br>bioregion (Northern<br>Midlands, South<br>East, Southern<br>Ranges) |                                                                                                          |
| DAM                       | E. <i>amygdalina</i> forest & woodland on mudstone   | In Ben Lomond, Flinders, Northern Slopes,<br>South East & Southern Ranges. | To centroid                                                                                 |                                                                                                          |
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone  | In Northern Midlands near South East on Campbell Town and Ross maps.       | To South East                                                                               |                                                                                                          |
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone  | In Central Highlands on Gormanston map.                                    | To centroid                                                                                 | Possibly E. <i>nitida</i> and not E. <i>amygdalina</i> , or transposition error from old Tasveg code As. |

| REM<br>code <sup>25</sup> | Vegetation community                                                  | Location &/or bioregion of assessed patches                                          | Allocation                                   | Notes                                                                                               |
|---------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone                   | In Fingal Valley in Northern Midlands near<br>South East and Ben Lomond.             | To Ben Lomond and<br>South East              | Allocated on position relative to valley bottom and slopes leading uphill to bioregion proper.      |
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone                   | In Central Highlands near Northern Midlands.                                         | To Northern<br>Midlands                      | Includes patches in Northern Slopes on<br>Poatina map. Bioregion boundary may<br>need reassessment. |
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone                   | In Central Highlands near Northern Slopes and Southern Ranges.                       | To Northern Slopes<br>and Southern<br>Ranges |                                                                                                     |
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone                   | In Northern Midlands near Northern Slopes (Bridgenorth, Exeter and Launceston maps). | To Northern Slopes                           | Allocated on position relative to valley bottom and slopes leading uphill to bioregion proper.      |
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone                   | In Flinders near Northern Slopes and Ben<br>Lomond.                                  | To nearest adjoining<br>bioregion.           |                                                                                                     |
| DAS                       | E. <i>amygdalina</i> forest & woodland on sandstone                   | In Ben Lomond, Northern Slopes, South East & Southern Ranges.                        | To centroid                                  |                                                                                                     |
| DAZ                       | <i>E. amygdalina</i> inland forest and woodland on Cainozoic deposits | In Ben Lomond, Northern Midlands, Northern<br>Slopes & South East.                   | As centroid                                  |                                                                                                     |
| DAZ                       | <i>E. amygdalina</i> inland forest and woodland on Cainozoic deposits | In Flinders near Northern Slopes.                                                    | To Northern Slopes                           |                                                                                                     |
| DAZ                       | <i>E. amygdalina</i> inland forest and woodland on Cainozoic deposits | In Southern Ranges near South East on Ouse map.                                      | To South East                                |                                                                                                     |
| DBA                       | E. barberi forest and woodland                                        | In South East.                                                                       | As centroid                                  |                                                                                                     |
| DBA                       | E. barberi forest and woodland                                        | In Ben Lomond on Giblin & Saddleback maps.                                           | Recoded to "Err"                             | Outside of species range.                                                                           |

| REM<br>code <sup>25</sup> | Vegetation community                                          | Location &/or bioregion of assessed patches                                              | Allocation                                                   | Notes                                                                                                                                                                                                                                                     |
|---------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DBA                       | E. barberi forest and woodland                                | In Southern Ranges and West near Lake Pedder on Anna map.                                | Recoded to "Err"                                             | Probably miscoded Buttongrass communities.                                                                                                                                                                                                                |
| DCO                       | <i>E. coccifera</i> forest and woodland                       | In Northern Slopes near Central Highlands.                                               | To Central<br>Highlands                                      |                                                                                                                                                                                                                                                           |
| DCO                       | <i>E. coccifera</i> forest and woodland                       | In South East near Southern Ranges on Wellington Range.                                  | To Southern Ranges                                           |                                                                                                                                                                                                                                                           |
| DCO                       | <i>E. coccifera</i> forest and woodland                       | In Ben Lomond, Central Highlands, Southern<br>Ranges & West.                             | As centroid                                                  |                                                                                                                                                                                                                                                           |
| DCR                       | <i>E. cordata</i> forest                                      | In South East near Southern Ranges.                                                      | To Southern Ranges                                           |                                                                                                                                                                                                                                                           |
| DDE                       | <i>E. delegatensis</i> dry forest and woodland                | In South East (Wellington Range; Bushy Park<br>and Lymington maps) near Southern Ranges. | To Southern Ranges                                           |                                                                                                                                                                                                                                                           |
| DDE                       | <i>E. delegatensis</i> dry forest and woodland                | In Ben Lomond, Central Highlands, Northern Slopes, Southern Ranges & West.               | As centroid                                                  |                                                                                                                                                                                                                                                           |
| DDE                       | <i>E. delegatensis</i> dry forest and woodland                | In South East near Central Highlands and Southern Ranges.                                | To Central<br>Highlands or<br>Southern Ranges<br>(nearer of) | Only applied to patches topographically<br>contiguous with main body of Central<br>Plateau and not significantly isolated from<br>other patches of community. Complex<br>around the Southern Ranges but evident<br>when topography and drainage examined. |
| DDE                       | <i>E. delegatensis</i> dry forest and woodland                | In Northern Midlands.                                                                    | To nearest adjoining bioregion                               | All occurrences occur around the fringe of the region.                                                                                                                                                                                                    |
| DDP                       | <i>E. dalrympleana - E. pauciflora</i><br>forest and woodland | In BL & Southern Ranges.                                                                 | As centroid                                                  |                                                                                                                                                                                                                                                           |
| DDP                       | <i>E. dalrympleana - E. pauciflora</i> forest and woodland    | In Central Highlands near Northern Slopes.                                               | To Northern Slopes                                           | These are lower altitude frosty locations.<br>More widespread in Central Highlands than<br>mapped.                                                                                                                                                        |
| DDP                       | <i>E. dalrympleana - E. pauciflora</i><br>forest and woodland | Not in Central Highlands near Northern Slopes.                                           | See note.                                                    | Done as part of DPD due to incompleteness of mapped coverage of community                                                                                                                                                                                 |

| REM<br>code <sup>25</sup> | Vegetation community                       | Location &/or bioregion of assessed patches                                              | Allocation              | Notes                                                                              |
|---------------------------|--------------------------------------------|------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------|
| DGL                       | <i>E. globulus</i> dry forest and woodland | In Flinders & South East.                                                                | As centroid             |                                                                                    |
| DGL                       | <i>E. globulus</i> dry forest and woodland | In Southern Ranges near South East on Lloyd and Uxbridge maps.                           | To South East           | Other Southern Ranges patches left as centroid.                                    |
| DGL                       | <i>E. globulus</i> dry forest and woodland | In Ben Lomond near Flinders on (Dubin Town,<br>Ironhouse and Scamander maps.             | To Flinders             | Other Ben Lomond patches left unchanged, though possible mapping or coding errors. |
| DGL                       | <i>E. globulus</i> dry forest and woodland | In Central Highlands and Southern Ranges on Rufus and Ina maps.                          | Recoded to "Err"        |                                                                                    |
| DGW                       | <i>E. gunnii</i> woodland                  | In Ben Lomond, Central Highlands and Southern Ranges.                                    | As centroid             |                                                                                    |
| DGW                       | <i>E. gunnii</i> woodland                  | In Northern Slopes near Central Highlands.                                               | To Central<br>Highlands |                                                                                    |
| DKW                       | King Island Eucalypt woodland              | In King on King Island                                                                   | As centroid             |                                                                                    |
| DMO                       | <i>E. morrisbyi</i> forest and woodland    | In South East.                                                                           | As centroid             |                                                                                    |
| DMO                       | <i>E. morrisbyi</i> forest and woodland    | In Ben Lomond on Lilydale map.                                                           | Recoded to 'Err'        | Outside species range.                                                             |
| DMW                       | Midlands woodland complex                  | In Flinders , Northern Midlands and Northern Slopes.                                     | As centroid             | Distribution patchy over entire range.                                             |
| DNF                       | <i>E. nitida</i> Furneaux forest           | In Flinders in the Furneaux group.                                                       | As centroid             |                                                                                    |
| DNF                       | <i>E. nitida</i> Furneaux forest           | In Central Highlands on Selina map.                                                      | Retagged to "Err"       |                                                                                    |
| DNI                       | <i>E. nitida</i> dry forest and woodland   | In Central Highlands, King, Northern Slopes, Southern Ranges and West                    | As centroid             | Distribution shows little correlation to bioregional boundaries.                   |
| DOB                       | <i>E. obliqua</i> dry forest and woodland  | In Ben Lomond, Flinders, King, Northern Slopes,<br>South East, Southern Ranges and West. | As centroid             |                                                                                    |

| REM<br>code <sup>25</sup> | Vegetation community                                 | Location &/or bioregion of assessed patches                                          | Allocation                                      | Notes                                                                                      |
|---------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|
| DOB                       | <i>E. obliqua</i> dry forest and woodland            | In Central Highlands.                                                                | To nearest adjoining bioregion                  | Patch at 1,040m on Wihareja map sheet<br>(surrounded by DGW and DCO) retagged to<br>error. |
| DOB                       | <i>E. obliqua</i> dry forest and woodland            | In Northern Midlands other than near Central Highlands.                              | To nearest adjoining bioregion                  |                                                                                            |
| DOV                       | <i>E. ovata</i> forest and woodland                  | In Central Highlands.                                                                | To nearest adjoining bioregion                  | Allocations to Northern Midlands, South<br>East and West.                                  |
| DOV                       | <i>E. ovata</i> forest and woodland                  | In Ben Lomond, Flinders, Northern Midlands,<br>Northern Slopes, South East and West. | As centroid                                     |                                                                                            |
| DOV                       | <i>E. ovata</i> forest and woodland                  | In Southern Ranges near South East on Uxbridge and Longley maps                      | To South East                                   |                                                                                            |
| DOV                       | E. ovata forest and woodland                         | On King Island                                                                       | Retagged to WGK                                 |                                                                                            |
| DOW                       | <i>E. ovata</i> heathy woodland                      | In Ben Lomond, Flinders, Northern Slopes,<br>South East and West.                    | As centroid                                     |                                                                                            |
| DPD                       | <i>E. pauciflora</i> forest and woodland on dolerite | In Ben Lomond, Central Highlands, South East and Southern Ranges.                    | As centroid                                     |                                                                                            |
| DPD                       | <i>E. pauciflora</i> forest and woodland on dolerite | In Northern Midlands (Lake River) near Central Highlands                             | To Central<br>Highlands                         |                                                                                            |
| DPD                       | <i>E. pauciflora</i> forest and woodland on dolerite | In Northern Slopes near Central Highlands or Northern Midlands                       | To Central<br>Highlands or<br>Northern Midlands |                                                                                            |
| DPD                       | <i>E. pauciflora</i> forest and woodland on dolerite | In West on Algonkian map near Southern Ranges.                                       | To Southern Ranges                              | Single patch relatively contiguous with Southern Ranges topography.                        |
| DPD                       | <i>E. pauciflora</i> forest and woodland on dolerite | In Northern Slopes on Mole Creek map.                                                | Retagged to DPO                                 | On limestone.                                                                              |
| DPE                       | <i>E. perriniana</i> forest and woodland             | In South East                                                                        | As centroid                                     | Species locations in the west of bioregion not mapped.                                     |

| REM<br>code <sup>25</sup> | Vegetation community                                                | Location &/or bioregion of assessed patches                                                                          | Allocation           | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DPE                       | <i>E. perriniana</i> forest and woodland                            | In Ben Lomond bioregion on Mangana,<br>Saddleback and Spurrs Rivulet maps.                                           | Retagged to "Err"    | Outside of species range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DPO                       | <i>E. pauciflora</i> forest and woodland not on dolerite substrates | In Ben Lomond, Central Highlands, Flinders,<br>Northern Midlands, Northern Slopes, South East<br>and Southern Ranges | As centroid          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DPO                       | <i>E. pauciflora</i> forest and woodland not on dolerite substrates | In Northern Midlands in Fingal Valley near<br>South East                                                             | To South East        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DPU                       | <i>E. pulchella</i> forest and woodland                             | In South East and Southern Ranges (except on Ouse map).                                                              | As centroid          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DPU                       | <i>E. pulchella</i> forest and woodland                             | In Southern Range on Ouse map near South<br>East.                                                                    | To South East        | This patch may be outside of the species range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DPU                       | <i>E. pulchella</i> forest and woodland                             | In Flinders on Ironhouse map near Ben Lomond                                                                         | To Ben Lomond        | These polygons have been split in Tasveg 2 by the bioregion boundary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DPU                       | <i>E. pulchella</i> forest and woodland                             | In Northern Slopes on Deloraine map.                                                                                 | Retagged to DSC      | Outside species range. This is a sliver and an inlier in a plantation. Other forest in vicinity is DSC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DPU                       | <i>E. pulchella</i> forest and woodland                             | In Southern Ranges on Echo map.                                                                                      | Retagged to "Err"    | Outside of species range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DRI                       | E. risdonii forest and woodland                                     | In South East.                                                                                                       | As centroid          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DRI                       | E. risdonii forest and woodland                                     | In Ben Lomond on Rossarden map.                                                                                      | Retagged to "Err"    | Outside of species range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DRO                       | <i>E. rodwayi</i> forest and woodland                               | In Ben Lomond, Central Highlands, Northern<br>Midlands, Northern Slopes, South East &<br>Southern Ranges.            | As centroid          | Patches highly dependent on localised frosty conditions - many patches proximal to bioregion boundaries are at lower altitudes reflecting local forest conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DSC                       | E. amygdalina - E. obliqua                                          | In Central Highlands near Northern Midlands or                                                                       | To nearest adjoining |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                         | damp sclerophyll forest                                             | Northern Slopes.                                                                                                     | bioregion            | 1000 million (1000 million (10 |

| REM<br>code <sup>25</sup> | Vegetation community                                            | Location &/or bioregion of assessed patches                                                       | Allocation         | Notes                                                                                                                                                                                 |
|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSC                       | <i>E. amygdalina - E. obliqua</i><br>damp sclerophyll forest    | In Northern Midlands near Northern Slopes.                                                        | To Northern Slopes |                                                                                                                                                                                       |
| DSC                       | <i>E. amygdalina - E. obliqua</i><br>damp sclerophyll forest    | In Ben Lomond, Flinders, Northern Slopes and South East.                                          | As centroid        |                                                                                                                                                                                       |
| DSG                       | <i>E. sieberi</i> forest and woodland on granite                | In Ben Lomond, Flinders and South East.                                                           | As centroid        | Note: BL-NM IBRA boundary - polygons<br>arbitrarily split by Tasveg so that polygons<br>are DSG on BL side and DSO on Northern<br>Midlands side despite contiguous geology<br>(Dgaf). |
| DSG                       | <i>E. sieberi</i> forest and woodland on granite                | In West on Beryl map.                                                                             | Retagged to "Err"  | Outside species range.                                                                                                                                                                |
| DSO                       | <i>E. sieberi</i> forest and woodland not on granite substrates | In Ben Lomond (but not Lilydale map), Flinders and South East (but not Cawood map).               | As centroid        |                                                                                                                                                                                       |
| DSO                       | <i>E. sieberi</i> forest and woodland not on granite substrates | In Northern Midlands in Fingal Valley near Ben<br>Lomond.                                         | To Ben Lomond      |                                                                                                                                                                                       |
| DSO                       | <i>E. sieberi</i> forest and woodland not on granite substrates | In South East (Cawood map), Northern<br>Midlands (Westbury map) and Ben Lomond<br>(Lilydale map). | Retagged to "Err"  | Outside of species range.                                                                                                                                                             |
| DTD                       | <i>E. tenuiramis</i> forest and woodland on dolerite            | In South East and Southern Ranges (except on Bushy Park, Murdunna and Ouse maps.)                 | As centroid        |                                                                                                                                                                                       |
| DTD                       | <i>E. tenuiramis</i> forest and woodland on dolerite            | In Southern Ranges (Bushy Park and Ouse maps) near South East.                                    | To South East      | Rest of Southern Ranges tagged as centroid.                                                                                                                                           |
| DTG                       | <i>E. tenuiramis</i> forest and woodland on granite             | In South East on Murdunna map.                                                                    | Retagged to DTD    | No granite at location - its all dolerite.                                                                                                                                            |
| DTG                       | <i>E. tenuiramis</i> forest and woodland on granite             | In South East on Freycinet Peninsula and East Coast.                                              | As centroid        |                                                                                                                                                                                       |
| DTG                       | <i>E. tenuiramis</i> forest and woodland on granite             | In Southern Ranges on Ouse map.                                                                   | Retagged to "DTO"  | Patch contiguous with large patch of DTO on sandstone.                                                                                                                                |

| REM<br>code <sup>25</sup> | Vegetation community                                             | Location &/or bioregion of assessed patches                                                                                    | Allocation        | Notes                                                                                                    |
|---------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------|
| DTG                       | <i>E. tenuiramis</i> forest and woodland on granite              | In South East on Lymington map.                                                                                                | Retagged to "DTO" | Patch is sedimentary rocks and associated outwash.                                                       |
| DTO                       | <i>E. tenuiramis</i> forest and woodland on sediments            | In South East and West                                                                                                         | As centroid       |                                                                                                          |
| DTO                       | <i>E. tenuiramis</i> forest and woodland on sediments            | In Southern Ranges (Bushy Park, Collinsvale,<br>Dee, Strickland, Ouse, Ellendale, Lloyd and<br>Uxbridge maps) near South East. | To South East     | Rest of Southern Ranges tagged to centroid.                                                              |
| DTO                       | <i>E. tenuiramis</i> forest and woodland on sediments            | In Central Highlands on Dennistoun, Table and Vincents maps, near South East.                                                  | To South East     |                                                                                                          |
| DVC                       | <i>E. viminalis - E. globulus</i> coastal forest and woodland    | In Ben Lomond on Ironhouse map near Flinders                                                                                   | To Flinders       | Polygon arising from Tasveg splitting of mapping using the bioregional boundary line.                    |
| DVC                       | <i>E. viminalis - E. globulus</i> coastal forest and woodland    | In Flinders, King, Northern Slopes, South East<br>(except Kempton map), Southern Ranges and<br>West.                           | As centroid       |                                                                                                          |
| DVC                       | <i>E. viminalis - E. globulus</i> coastal<br>forest and woodland | On Kempton map.                                                                                                                | Retagged to "DVG" | This is a narrow polygon on a steep sheltered slope with DVG either side.                                |
| DVC                       | <i>E. viminalis - E. globulus</i> coastal forest and woodland    | In Ben Lomond in non-coastal locations<br>(Pioneer, Nunamara, St Marys and Stanhope<br>maps).                                  | Retagged to "Err" |                                                                                                          |
| DVF                       | <i>E. viminalis</i> Furneaux forest and woodland                 | On Furneaux Islands.                                                                                                           | As centroid       |                                                                                                          |
| DVG                       | <i>E. viminalis</i> grassy forest and woodland                   | In Southern Ranges (Dobson, Ellendale, Lloyd,<br>Ouse, Strickland and Uxbridge maps) near South<br>East.                       | To South East     |                                                                                                          |
| DVG                       | <i>E. viminalis</i> grassy forest and woodland                   | In Ben Lomond, Flinders, King, Northern<br>Midlands, Northern Slopes, South East and<br>West.                                  | As centroid       | Some King and Northern Slopes patches<br>may be WVI or DVC (especially Hunter Island<br>patches on Qps). |

| REM<br>code <sup>25</sup> | Vegetation community                           | Location &/or bioregion of assessed patches                                                                              | Allocation                                             | Notes                                                                                                                  |
|---------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| DVG                       | <i>E. viminalis</i> grassy forest and woodland | In Central Highlands on Vincents map near Northern Midlands and South East.                                              | To Northern<br>Midlands and South<br>East (to nearest) |                                                                                                                        |
| DVG                       | <i>E. viminalis</i> grassy forest and woodland | In Central Highlands on Liena map near<br>Northern Slopes.                                                               | Retagged to "Err"                                      | 700m asl on a steep east facing slope down to the Mersey River.                                                        |
| DVG                       | <i>E. viminalis</i> grassy forest and woodland | In West on Stringer map.                                                                                                 | Retagged to "Err"                                      |                                                                                                                        |
| DVS                       | <i>E. viminalis</i> shrubby/heathy woodland    | In Ben Lomond, Northern Midlands and South<br>East on Geology T (Tertiary sediments).                                    | Retagged to "DAZ"                                      |                                                                                                                        |
| DVS                       | <i>E. viminalis</i> shrubby/heathy woodland    | In Southern Ranges on Leprena map.                                                                                       | Retagged to "DOV"                                      | These are in swampy situations on coastal dolerite along the Ida Bay Railway where there is abundant E. <i>ovata</i> . |
| DVS                       | <i>E. viminalis</i> shrubby/heathy woodland    | On coastal sands (Geology Qps) and on Geology<br>Qh on coast at mapped locations on Ulverstone<br>map.                   | Retagged to "DVC"                                      |                                                                                                                        |
| DVS                       | E. viminalis shrubby/heathy woodland           | On Furneaux Islands.                                                                                                     | Retagged to "DVF"                                      | Consistent with the Tasveg key.                                                                                        |
| DVS                       | E. viminalis shrubby/heathy woodland           | Rest of DVS not covered by other rules                                                                                   | Retagged to "DVG"                                      | Community is problematic in Tasveg 2.                                                                                  |
| DVS                       | <i>E. viminalis</i> shrubby/heathy woodland    | In Ben Lomond, Northern Midlands and South<br>East on Geologies Tb (basalt), R (sandstones) or<br>P (Permian mudstones). | Retagged to "DVG"                                      |                                                                                                                        |
| DVS                       | <i>E. viminalis</i> shrubby/heathy woodland    | On King Island                                                                                                           | Retagged to "DKW".                                     | Retagging consistent with the Tasveg key.                                                                              |
| DVS                       | <i>E. viminalis</i> shrubby/heathy woodland    | In Flinders and King on areas of RFA-mapped tall or wet forests (incl. SI and DSC).                                      | Retagged to "WVI"                                      |                                                                                                                        |

| REM<br>code <sup>25</sup> | Vegetation community                           | Location &/or bioregion of assessed patches                                                                   | Allocation                                                    | Notes                                                                                                                                                             |
|---------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GCL                       | Lowland grassland complex                      | In all bioregions.                                                                                            | As centroid                                                   | Community should probably not be named<br>'lowland' as it appears to apply to<br>undifferentiable grasslands wherever they<br>occur. Many will be induced or FRG. |
| GHC                       | Coastal grass and herbfield                    | In Flinders, King, South East, Southern Ranges and West.                                                      | As centroid                                                   |                                                                                                                                                                   |
| GPH                       | Highland <i>Poa</i> grassland                  | In Ben Lomond, Central Highlands, South East<br>(not Lymington map), Southern Ranges and<br>West.             | As centroid                                                   |                                                                                                                                                                   |
| GPH                       | Highland <i>Poa</i> grassland                  | In Northern Midlands on Hanleth map.                                                                          | Retagged to "GPL"                                             | None are above 400m                                                                                                                                               |
| GPH                       | Highland <i>Poa</i> grassland                  | On Flinders Island on Palana map,                                                                             | Retagged to "Err"                                             | Occurrence is coastal.                                                                                                                                            |
| GPH                       | Highland <i>Poa</i> grassland                  | In South East on Lymington map,                                                                               | Retagged to "Err"                                             | Occurrence is coastal.                                                                                                                                            |
| GPL                       | Lowland <i>Poa labillardierei</i><br>grassland | In Central Highlands near Northern Midlands<br>(Vincents map) or Northern Slopes (Cethana<br>and Liena maps), | To Northern<br>Midlands or<br>Northern Slopes (to<br>nearest) |                                                                                                                                                                   |
| GPL                       | Lowland <i>Poa labillardierei</i><br>grassland | In Southern Ranges on Strickland map near<br>South East.                                                      | To South East                                                 |                                                                                                                                                                   |
| GPL                       | Lowland <i>Poa labillardierei</i><br>grassland | In Ben Lomond, Flinders, King, Northern<br>Midlands, Northern Slopes and South East.                          | As centroid                                                   | King patch possibly GSL.                                                                                                                                          |
| GPL                       | Lowland <i>Poa labillardierei</i><br>grassland | n West on Hardwick map.                                                                                       | Retagged to "Err"                                             | Possibly coastal scrub.                                                                                                                                           |
| GRP                       | Rockplate grassland                            | All bioregions (currently only SE).                                                                           | As centroid                                                   | Community is a response to local<br>geomorphology rather than bioregional<br>factors. Only 4 polygons mapped - all in<br>Elizabeth River.                         |

| REM<br>code <sup>25</sup> | Vegetation community                 | Location &/or bioregion of assessed patches                                                                                | Allocation              | Notes                                                                                                                                                                 |
|---------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSL                       | Lowland sedgy grassland              | In Ben Lomond, Flinders, King, Northern<br>Midlands, Northern Slopes, South East and<br>Southern Ranges (not D'Arcys map). | As centroid             |                                                                                                                                                                       |
| GSL                       | Lowland sedgy grassland              | In Central Highlands and Southern Ranges (D'Arcys map only).                                                               | Retagged to "Err"       | Not is lowland situation.                                                                                                                                             |
| GTL                       | Lowland Poa grassland                | In Northern Slopes on Bridgenorth map near Northern Midlands.                                                              | To Northern<br>Midlands |                                                                                                                                                                       |
| GTL                       | Lowland Poa grassland                | In Ben Lomond, Flinders, King, Northern<br>Midlands, South East and West.                                                  | As centroid             | Flinders, King and West possibly incorrect.<br>Ben Lomond patches suggest a fuzzy<br>boundary with Northern Midlands but<br>extensive clearing may have created this. |
| GTL                       | Lowland <i>Poa</i> grassland         | In Southern Ranges near South East on Lloyd and Uxbridge maps.                                                             | To South East           |                                                                                                                                                                       |
| НСН                       | Alpine coniferous heathland          | In Central Highlands, Southern Ranges and West.                                                                            | As centroid             |                                                                                                                                                                       |
| НСН                       | Alpine coniferous heathland          | In Northern Slopes on Rowallan map near<br>Central Highlands.                                                              | To Central<br>Highlands |                                                                                                                                                                       |
| НСМ                       | Cushion moorland                     | In Ben Lomond, Central Highlands, Southern<br>Ranges & West.                                                               | As centroid             |                                                                                                                                                                       |
| HHE                       | Eastern alpine heathland             | In Northern Slopes near Central Highlands                                                                                  | To Central<br>Highlands | Includes all patches in Northern Slopes                                                                                                                               |
| HHE                       | Eastern alpine heathland             | In Ben Lomond, Central Highlands, Southern<br>Ranges, West                                                                 | As centroid             |                                                                                                                                                                       |
| HHW                       | Western alpine heathland             | In Central Highlands, Southern Ranges, West                                                                                | As centroid             |                                                                                                                                                                       |
| HSE                       | Western alpine<br>sedgeland/herbland | In Central Highlands, Southern Ranges, West                                                                                | As centroid             |                                                                                                                                                                       |
| HSE                       | Eastern alpine sedgeland             | In Northern Slopes, except as noted for Montana map sheet                                                                  | To Central<br>Highlands |                                                                                                                                                                       |

| REM<br>code <sup>25</sup> | Vegetation community                            | Location &/or bioregion of assessed patches                         | Allocation                                            | Notes                                                                                                                     |
|---------------------------|-------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| HSE                       | Eastern alpine sedgeland                        | In Northern Slopes on Montana map sheet, below 400m.                | Retagged to "DAS",<br>assigned to<br>Northern Slopes. | Site is at 300m - not alpine. PI type indicates<br>eucalypt regrowth. Former Tasveg code was<br>As - maybe mistagged DAS. |
| HSW                       | Western alpine<br>sedgeland/herbland            | In Ben Lomond.                                                      | Retagged to "Err"                                     | Not western. Some as low as 100m ASL on the Tamar.                                                                        |
| HSW                       | Western alpine<br>sedgeland/herbland            | In Central Highlands, Southern Ranges and West.                     | As centroid                                           |                                                                                                                           |
| HUE                       | Eastern alpine vegetation (undifferentiated)    | In Ben Lomond, Central Highlands and Southern Ranges.               | As centroid                                           |                                                                                                                           |
| HUE                       | Eastern alpine vegetation<br>(undifferentiated) | In South East near Southern Ranges on Collinsvale and Longley maps. | To Southern Ranges                                    |                                                                                                                           |
| HUE                       | Eastern alpine vegetation (undifferentiated)    | In Northern Slopes (Loongana map) near<br>Central Highlands         | To Central<br>Highlands                               |                                                                                                                           |
| MAP                       | Alkaline pans                                   | In Ben Lomond (Lisle map), Southern Ranges and West.                | As centroid                                           | Community description has this community restricted to West bioregion.                                                    |
| MBE                       | Eastern Buttongrass moorland                    | In Northern Slopes near Central Highlands.                          | To Central<br>Highlands                               |                                                                                                                           |
| MBE                       | Eastern Buttongrass moorland                    | In Ben Lomond, Central Highlands, Southern Ranges and West.         | As centroid                                           |                                                                                                                           |
| MBP                       | Pure buttongrass moorland                       | In Central Highlands, Southern Ranges and West.                     | As centroid                                           |                                                                                                                           |
| MBP                       | Pure buttongrass moorland                       | In Northern Slopes near Central Highlands.                          | To Central<br>Highlands                               |                                                                                                                           |
| MBR                       | Sparse buttongrass moorland on slopes           | In Central Highlands, Southern Ranges and West.                     | As centroid                                           |                                                                                                                           |
| MBR                       | Sparse buttongrass moorland on slopes           | In Ben Lomond.                                                      | As centroid.                                          | The location of these polygons is relatively flat - possibly MBE.                                                         |

| REM<br>code <sup>25</sup> | Vegetation community                         | Location &/or bioregion of assessed patches                                                          | Allocation              | Notes                                                                                                                                                      |
|---------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MBS                       | Buttongrass moorland with<br>emergent shrubs | In Northern Slopes near Central Highlands.                                                           | To Central<br>Highlands |                                                                                                                                                            |
| MBS                       | Buttongrass moorland with<br>emergent shrubs | In Ben Lomond, Central Highlands, King,<br>Southern Ranges and West.                                 | As centroid             |                                                                                                                                                            |
| MBU                       | Buttongrass moorland<br>(undifferentiated)   | In Central Highlands, Flinders, King, Northern Slopes, Southern Ranges and West.                     | As centroid             | Absence from Ben Lomond suggests an<br>inconsistent approach to mapping,<br>particularly as polygons in Flinders have<br>been sliced by the IBRA boundary. |
| MBW                       | Western buttongrass moorland                 | In Northern Slopes on Lea map near Central Highlands.                                                | To Central<br>Highlands |                                                                                                                                                            |
| MBW                       | Western buttongrass moorland                 | In Central Highlands, Southern Ranges and West                                                       | As centroid             | Boundary between Southern Ranges and West probably needs review.                                                                                           |
| MDS                       | Subalpine Diplarrena latifolia<br>rushland   | In Central Highlands and Southern Ranges.                                                            | As Centroid             | Potential issue in Tasveg key: allows for<br>community below 600m but description<br>says 700-900m.                                                        |
| MGH                       | Highland grassy sedgeland                    | In South East on Echo and Steppes maps near Central Highlands.                                       | To Central<br>Highlands |                                                                                                                                                            |
| MGH                       | Highland grassy sedgeland                    | In Ben Lomond, Central Highlands and Southern Ranges (not Recherche map).                            | As centroid             |                                                                                                                                                            |
| MGH                       | Highland grassy sedgeland                    | In Southern Ranges on Recherche map.                                                                 | Retagged to "Err"       | Areas on coast.                                                                                                                                            |
| MGH                       | Highland grassy sedgeland                    | In West (Anna, Charter, Pearse and Tullah<br>maps) near Southern Ranges.                             | To Southern Ranges      |                                                                                                                                                            |
| MGH                       | Highland grassy sedgeland                    | In Northern Slopes on Borradaile and Rowallan maps near Central Highlands                            | To Central<br>Highlands |                                                                                                                                                            |
| MRR                       | Restionaceae rushland                        | In Ben Lomond, Central Highlands, King,<br>Northern Slopes, South East, Southern Ranges<br>and West. | As centroid             | Fuzzy bioregional boundaries unlikely to arise in this community - more likely responding to local circumstances.                                          |

| REM<br>code <sup>25</sup> | Vegetation community              | Location &/or bioregion of assessed patches                                                                    | Allocation         | Notes                                                                                                                                                      |
|---------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSP                       | Sphagnum peatland                 | In Ben Lomond, Central Highlands, Northern Slopes, Southern Ranges and West.                                   | As centroid        |                                                                                                                                                            |
| MSW                       | Western lowland sedgeland         | In Ben Lomond.                                                                                                 | Retagged to "Err"  | Community not identified for bioregion.                                                                                                                    |
| MSW                       | Western lowland sedgeland         | In Southern Ranges on Glovers and Razerback maps near West.                                                    | To West            | Land system makes a better boundary and matches this occurrence.                                                                                           |
| MSW                       | Western lowland sedgeland         | In West.                                                                                                       | As centroid        |                                                                                                                                                            |
| NAD                       | Acacia dealbata                   | All occurrences.                                                                                               | As centroid        | Community is readily induced by disturbance in most parts of Tasmania.                                                                                     |
| NAF                       | Acacia melanoxylon on flats       | In Ben Lomond, Flinders, King, Northern<br>Midlands, Northern Slopes, South East,<br>Southern Ranges and West. | As centroid        |                                                                                                                                                            |
| NAF                       | Acacia melanoxylon on flats       | In Central Highlands on Dundas map.                                                                            | Retagged to "Err"  | Not on flats - possible transcription error from old Tasveg AF.                                                                                            |
| NAL                       | Allocasuarina littoralis forest   | In Ben Lomond, Flinders, Northern Midlands,<br>South East and Southern Ranges                                  | As centroid        | Southern Ranges patch (South Bruny) probably needs review.                                                                                                 |
| NAL                       | Allocasuarina littoralis forest   | In Northern Slopes on Beaconsfield and Harford maps near Flinders.                                             | To Flinders        |                                                                                                                                                            |
| NAR                       | Acacia melanoxylon on rises       | In Central Highlands (Cethana, Lea, Pearse and Pencil Pine maps) near Northern Slopes.                         | To Northern Slopes | Balance in Central Highlands polygons assigned as centroid.                                                                                                |
| NAR                       | Acacia melanoxylon on rises       | In Ben Lomond, King, Northern Slopes, South<br>East, Southern Ranges and West.                                 | As centroid        |                                                                                                                                                            |
| NAV                       | Allocasuarina verticillata forest | In Ben Lomond, Flinders, Northern Midlands,<br>Northern Slopes and South East.                                 | As centroid        | Difficult to assign on fuzzy boundaries as<br>often occurs on rocky slopes along and near<br>boundaries, i.e. bioregionalisation not really<br>applicable. |

| REM<br>code <sup>25</sup> | Vegetation community                                                    | Location &/or bioregion of assessed patches                                                  | Allocation        | Notes                                                                                                                             |
|---------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| NAV                       | Allocasuarina verticillata forest                                       | In King on Stanley map.                                                                      | Retagged to "Err" | This is a coastal location. Occurrence in bioregion has been identified as doubtful consistently since appearance on RFA mapping. |
| NBA                       | <i>Bursaria - Acacia</i> woodland and scrub                             | In all bioregions where occurs.                                                              | As centroid       | Community is readily induced by disturbance in most drier parts of Tasmania.                                                      |
| NBS                       | Banksia serrata woodland                                                | In Flinders and King                                                                         | As centroid       |                                                                                                                                   |
| NBS                       | Banksia serrata woodland                                                | In Central Highlands on Will map                                                             | Retagged to "Err" |                                                                                                                                   |
| NCR                       | Callitris rhomboidea forest                                             | In all bioregions where occurs (Flinders and South East.)                                    | As centroid       |                                                                                                                                   |
| NLA                       | Leptospermum scoparium -<br>Acacia mucronata forest                     | In Ben Lomond, Central Highlands and West                                                    | As centroid       | Single patch in Ben Lomond may need assessment.                                                                                   |
| NLE                       | Leptospermum forest                                                     | In Ben Lomond, Central Highlands, Northern<br>Slopes, Southern Ranges and West               | As centroid       |                                                                                                                                   |
| NLM                       | <i>Leptospermum lanigerum -<br/>Melaleuca squarrosa</i> swamp<br>forest | In all bioregions where occurs.                                                              | As centroid       | Occurs in all bioregions except Northern<br>Midlands. Possibly fuzzy in Central<br>Highlands.                                     |
| NLN                       | Subalpine <i>Leptospermum</i><br>nitidum woodland                       | In Central Highlands, Southern Ranges and West                                               | As centroid       |                                                                                                                                   |
| NME                       | <i>Melaleuca ericifolia</i> swamp<br>forest                             | In Ben Lomond, Flinders, King, Northern<br>Midlands, Northern Slopes, South East and<br>West | As centroid       |                                                                                                                                   |
| NNP                       | Notelaea - Pomaderris - Beyeria<br>forest                               | In Northern Midlands on Dilston map near Ben<br>Lomond.                                      | To Ben Lomond     |                                                                                                                                   |
| NNP                       | Notelaea - Pomaderris - Beyeria<br>forest                               | In Ben Lomond, King, Northern Slopes, South<br>East, Southern Ranges and West                | As centroid       |                                                                                                                                   |

| REM<br>code <sup>25</sup> | Vegetation community                                               | Location &/or bioregion of assessed patches                                                                                        | Allocation              | Notes                                                              |
|---------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|
| RCO                       | Coastal rainforest                                                 | In Ben Lomond (Nunamara map), Central<br>Highlands (Pencil Pine map), Southern Ranges<br>(Burgess map) and West (Strathgordon map) | Retagged to "Err"       | Locations montane not coastal - possible<br>DCO but need checking. |
| RCO                       | Coastal rainforest                                                 | In Southern Ranges and West on coast (where not tagged to error)                                                                   | As centroid             |                                                                    |
| RFE                       | Rainforest fernland                                                | In Northern Slopes on Borradaile, Rowallan and Cathedral maps near Central Highlands                                               | To Central<br>Highlands |                                                                    |
| RFE                       | Rainforest fernland                                                | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                                      | As centroid             |                                                                    |
| RFS                       | <i>Nothofagus gunnii</i> rainforest<br>and scrub                   | n Northern Slopes on Will map near Central<br>Highlands                                                                            | To Central<br>Highlands |                                                                    |
| RFS                       | Nothofagus gunnii rainforest<br>and scrub                          | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                                      | As centroid             | Ben Lomond needs checking - outside species range.                 |
| RHP                       | <i>Lagarostrobos franklinii</i><br>rainforest and scrub            | In Ben Lomond                                                                                                                      | Retagged to "Err"       | Outside of species range.                                          |
| RHP                       | <i>Lagarostrobos franklinii</i><br>rainforest and scrub            | In Central Highlands on Mt Read                                                                                                    | As centroid             |                                                                    |
| RHP                       | <i>Lagarostrobos franklinii</i><br>rainforest and scrub            | In Central Highlands (not Mt Read) near West                                                                                       | To West                 |                                                                    |
| RHP                       | <i>Lagarostrobos franklinii</i><br>rainforest and scrub            | In Southern Ranges and West                                                                                                        | As centroid             |                                                                    |
| RKF                       | Athrotaxis selaginoides -<br>Nothofagus gunnii short<br>rainforest | In Central Highlands, Southern Ranges and West                                                                                     | As centroid             |                                                                    |
| RKP                       | Athrotaxis selaginoides<br>rainforest                              | n Northern Slopes (Achilles, Borradaile, Cradle,<br>Rowallan and Will maps) near Central Highlands                                 | To Central<br>Highlands |                                                                    |
| RKP                       | Athrotaxis selaginoides<br>rainforest                              | In Central Highlands, Southern Ranges and West                                                                                     | As centroid             |                                                                    |

| REM<br>code <sup>25</sup> | Vegetation community                                             | Location &/or bioregion of assessed patches                                                                       | Allocation              | Notes                                       |
|---------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------|
| RKS                       | Athrotaxis selaginoides<br>subalpine scrub                       | In Central Highlands, Southern Ranges and West                                                                    | As centroid             |                                             |
| RKX                       | Highland rainforest scrub with dead Athrotaxis selaginoides      | In Central Highlands, Southern Ranges and West                                                                    | As centroid             |                                             |
| RLS                       | Leptospermum with rainforest scrub                               | In Flinders on Tomahawk map                                                                                       | Retagged to "Err"       | Situated on a swampy coastal plain.         |
| RLS                       | Leptospermum with rainforest scrub                               | In Ben Lomond, Central Highlands, King,<br>Northern Slopes, South East, Southern Ranges<br>& West                 | As centroid             |                                             |
| RML                       | Nothofagus-Leptospermum<br>short rainforest                      | In Northern Slopes on Achilles, Cathedral and Rowallan maps near Central Highlands                                | To Central<br>Highlands |                                             |
| RML                       | Nothofagus-Leptospermum<br>short rainforest                      | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                     | As centroid             |                                             |
| RMS                       | Nothofagus / Phyllocladus short<br>rainforest                    | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Slopes, South East, Southern<br>Ranges & West       | As centroid             | Flinders patch on Loccota map may be error. |
| RMT                       | Nothofagus - Atherosperma<br>rainforest                          | In Flinders (Lanka, Pearly Brook, Pyengana,<br>Scottsdale Spurrs Rivulet and The Gardens<br>maps) near Ben Lomond | To Ben Lomond           |                                             |
| RMT                       | Nothofagus - Atherosperma<br>rainforest                          | In Ben Lomond, Central Highlands, King,<br>Northern Slopes, South East, Southern Ranges &<br>West                 | As centroid             |                                             |
| RPF                       | Athrotaxis<br>cupressoides/Nothofagus<br>gunnii short rainforest | In Ben Lomond, Central Highlands and West                                                                         | As centroid             |                                             |
| RPP                       | Athrotaxis cupressoides<br>rainforest                            | In Central Highlands and Southern Ranges                                                                          | As centroid             |                                             |

| REM<br>code <sup>25</sup> | Vegetation community                  | Location &/or bioregion of assessed patches                                                                                           | Allocation              | Notes                                                                                                                                      |
|---------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| RPP                       | Athrotaxis cupressoides<br>rainforest | In West near Southern Ranges                                                                                                          | To Southern Ranges      |                                                                                                                                            |
| RPP                       | Athrotaxis cupressoides<br>rainforest | In Northern Slopes on Achilles, Cathedral and Rowallan maps near Central Highlands                                                    | To Central<br>Highlands |                                                                                                                                            |
| RPW                       | Athrotaxis cupressoides open woodland | In West on Gordonvale map near Southern<br>Ranges                                                                                     | To Southern Ranges      |                                                                                                                                            |
| RPW                       | Athrotaxis cupressoides open woodland | In Central Highlands and Southern Ranges                                                                                              | As centroid             |                                                                                                                                            |
| RSH                       | Highland low rainforest and scrub     | In Northern Slopes (Borradaile, Cathedral,<br>Cradle, Lake MacKenzie, Quamby Bluff,<br>Rowallan and Will maps) near Central Highlands | To Central<br>Highlands |                                                                                                                                            |
| RSH                       | Highland low rainforest and scrub     | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                                         | As centroid             |                                                                                                                                            |
| SAC                       | Acacia longifolia coastal scrub       | In Ben Lomond on Oxberry map near Flinders                                                                                            | To Flinders             |                                                                                                                                            |
| SAC                       | Acacia longifolia coastal scrub       | In Ben Lomond on Pyengana map                                                                                                         | Retagged to "Err"       | On the slopes of Mount Young.                                                                                                              |
| SAC                       | Acacia longifolia coastal scrub       | In Flinders, King, Northern Slopes, South East,<br>Southern Ranges & West                                                             | As centroid             |                                                                                                                                            |
| SBM                       | Banksia marginata wet scrub           | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                                         | As centroid             |                                                                                                                                            |
| SBR                       | Broadleaf scrub                       | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Midlands, Northern Slopes,<br>South East, Southern Ranges and West      | As centroid             | There are weak fuzzy boundaries for this<br>community, but not enough to change<br>bioregions.                                             |
| SCA                       | Coastal scrub on alkaline sands       | In Flinders, King and West                                                                                                            | As centroid             |                                                                                                                                            |
| SCH                       | Coastal heathland                     | In Flinders, King, Northern Slopes, South East,<br>Southern Ranges and West                                                           | As centroid             | Can arise nearly anywhere on the coast.<br>Northern Slopes occurrences may warrant<br>further assessment as close to King and<br>Flinders. |

| REM<br>code <sup>25</sup> | Vegetation community                         | Location &/or bioregion of assessed patches                                                                                                                     | Allocation              | Notes                                                   |
|---------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|
| SCK                       | Coastal complex on King Island               | In King on King Island                                                                                                                                          | As centroid             |                                                         |
| SCW                       | Heathland scrub complex at<br>Wingaroo       | On Flinders Island                                                                                                                                              | As centroid             |                                                         |
| SDU                       | Dry scrub                                    | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Midlands, Northern Slopes,<br>South East, Southern Ranges and West                                | As centroid             |                                                         |
| SHC                       | Heathland on calcarenite                     | In Flinders on Furneaux Islands                                                                                                                                 | As centroid             |                                                         |
| SHF                       | Heathland scrub mosaic on<br>Flinders Island | In Flinders on Furneaux Islands                                                                                                                                 | As centroid             |                                                         |
| SHG                       | Heathland on granite                         | In Ben Lomond, Flinders and South East                                                                                                                          | As centroid             |                                                         |
| SHL                       | Lowland sedgy heathland                      | In Ben Lomond, Flinders, King, Northern Slopes,<br>South East, Southern Ranges (not Dee map) and<br>West                                                        | As centroid             |                                                         |
| SHL                       | Lowland sedgy heathland                      | In Southern Ranges on Dee map                                                                                                                                   | Retagged to "Err"       | Area at 850m asl.                                       |
| SHL                       | Lowland sedgy heathland                      | In Central Highlands (Cethana, Gog, Loongana and Mole Creek maps) near Northern Slopes                                                                          | To Northern Slopes      |                                                         |
| SHS                       | Subalpine heathland                          | In Northern Slopes (Borradaile, Cathedral,<br>Cethana, Lake Mackenzie, Loongana, Parrawe,<br>Poatina, Quamby Bluff and Rowallan maps) near<br>Central Highlands | To Central<br>Highlands |                                                         |
| SHS                       | Subalpine heathland                          | In South East on Wellington Range near<br>Southern Ranges                                                                                                       | To Southern Ranges      |                                                         |
| SHS                       | Subalpine heathland                          | In Flinders on Preservation ma and, Clarke<br>Island                                                                                                            | Retagged to "Err"       | Mapped at sea level.                                    |
| SHS                       | Subalpine heathland                          | In Ben Lomond, Central Highlands, South East<br>(not Wellington Range) Southern Ranges and<br>West                                                              | As centroid             | Only valid South East occurrence is on Maria<br>Island. |

| REM<br>code <sup>25</sup> | Vegetation community                   | Location &/or bioregion of assessed patches                                                                                      | Allocation              | Notes                                                                                                                                            |
|---------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| SHS                       | Subalpine heathland                    | In Northern Midlands on Millers map near<br>Central Highlands                                                                    | To Central<br>Highlands |                                                                                                                                                  |
| SHU                       | Inland Heathland<br>(undifferentiated) | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Slopes, South East, Southern<br>Ranges and West                    | As centroid             |                                                                                                                                                  |
| SHU                       | Inland Heathland<br>(undifferentiated) | In Northern Midlands on Poatina map near<br>Northern Slopes                                                                      | To Northern Slopes      |                                                                                                                                                  |
| SHU                       | Inland Heathland<br>(undifferentiated) | In Northern Midlands on Nunamara map near<br>Ben Lomond                                                                          | To Ben Lomond           |                                                                                                                                                  |
| SHW                       | Wet heathland                          | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Midlands, Northern Slopes,<br>South East, Southern Ranges and West | As centroid             | There are some fuzzy indications around the edges of Northern Midlands, and also occurs in Central Highlands. Possible inconsistency in mapping. |
| SLW                       | Leptospermum scrub                     | In Northern Midlands on St Pauls Dome near<br>Ben Lomond                                                                         | To Ben Lomond           |                                                                                                                                                  |
| SLW                       | Leptospermum scrub                     | In Northern Midlands on Penny map near<br>Central Highlands                                                                      | To Central<br>Highlands |                                                                                                                                                  |
| SLW                       | Leptospermum scrub                     | In Northern Midlands (Brady's Lookout,<br>Bridgenorth, Launceston and Poatina maps)<br>near Northern Slopes                      | To Northern Slopes      |                                                                                                                                                  |
| SLW                       | Leptospermum scrub                     | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Slopes, South East, Southern<br>Ranges and West                    | As centroid             |                                                                                                                                                  |
| SMM                       | Melaleuca squamea heathland            | In Ben Lomond, Central Highlands, King,<br>Southern Ranges and West                                                              | As centroid             |                                                                                                                                                  |
| SMP                       | Melaleuca pustulata scrub              | In South East                                                                                                                    | As centroid             |                                                                                                                                                  |
| SMP                       | Melaleuca pustulata scrub              | In Ben Lomond on Victoria map                                                                                                    | Retagged to "Err"       | Outside species range.                                                                                                                           |

| REM<br>code <sup>25</sup> | Vegetation community         | Location &/or bioregion of assessed patches                                                                                | Allocation              | Notes                                                                                 |
|---------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|
| SMR                       | Melaleuca squarrosa scrub    | In Northern Midlands on Nile map near Ben<br>Lomond                                                                        | To Ben Lomond           |                                                                                       |
| SMR                       | Melaleuca squarrosa scrub    | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Slopes, South East, Southern<br>Ranges and West              | As centroid             |                                                                                       |
| SQR                       | Queenstown regrowth mosaic   | In Central Highlands and West                                                                                              | As centroid             | Distribution a function of landuse history.                                           |
| SRC                       | Seabird rookery complex      | In Flinders, King, South East, Southern Ranges and West                                                                    | As centroid             |                                                                                       |
| SRI                       | Riparian scrub               | In West on Temma map near King                                                                                             | To King                 | Possible Tasveg error - identical to a 2D watercourse polygon from the Hydarea layer. |
| SRI                       | Riparian scrub               | In Ben Lomond, Central Highlands, Flinders,<br>King, Northern Midlands, Northern Slopes,<br>South East and Southern Ranges | As centroid             | Has a patchy distribution.                                                            |
| SSC                       | Coastal Scrub                | In Flinders, King, Northern Slopes, South East,<br>Southern Ranges and West                                                | To centroid             |                                                                                       |
| SSC                       | Coastal Scrub                | In Central Highlands                                                                                                       | Retagged to "Err"       |                                                                                       |
| SSK                       | Scrub complex on King Island | In King on King Island                                                                                                     | As centroid             |                                                                                       |
| SSW                       | Western subalpine scrub      | In Central Highlands, Southern Ranges and West                                                                             | As centroid             |                                                                                       |
| SWW                       | Western wet scrub            | In Ben Lomond on Binalong map                                                                                              | Retagged to "Err"       |                                                                                       |
| SWW                       | Western wet scrub            | In South East on Lymington map                                                                                             | Retagged to "Err"       |                                                                                       |
| SWW                       | Western wet scrub            | In Northern Slopes on Montana map                                                                                          | Retagged to "Err"       |                                                                                       |
| SWW                       | Western wet scrub            | In Northern Slopes (Borradaile, Cethana, Lea,<br>Liena, Loyetea and Parrawe maps) near Central<br>Highlands                | To Central<br>Highlands |                                                                                       |
| SWW                       | Western wet scrub            | In Central Highlands, King, Southern Ranges and West                                                                       | As centroid             |                                                                                       |

| REM<br>code <sup>25</sup> | Vegetation community                                | Location &/or bioregion of assessed patches                                                                                                                                | Allocation              | Notes                                                                                         |
|---------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|
| WBR                       | E. brookeriana wet forest                           | In Central Highlands (Dundas map) and West<br>(Bowes map) near West                                                                                                        | To West                 |                                                                                               |
| WBR                       | E. brookeriana wet forest                           | On King Island                                                                                                                                                             | Recorded to WGK.        | RFA treated all eucalypt forest on King Island as WGK.                                        |
| WBR                       | E. brookeriana wet forest                           | In Ben Lomond, King, South East, Northern<br>Slopes and West                                                                                                               | As centroid             | Northern Slopes patch is potentially King -<br>bioregional boundary may need<br>reassessment. |
| WDA                       | <i>E. dalrympleana</i> forest                       | In Ben Lomond, Central Highlands and Southern Ranges                                                                                                                       | As centroid             |                                                                                               |
| WDA                       | E. dalrympleana forest                              | In South East on Echo map near Central<br>Highlands                                                                                                                        | To Central<br>Highlands |                                                                                               |
| WDA                       | E. dalrympleana forest                              | In West on Adamsfield map near Southern Ranges                                                                                                                             | To Southern Ranges      |                                                                                               |
| WDA                       | <i>E. dalrympleana</i> forest                       | In Northern Slopes (Borradaile, Cathedral, Lake<br>Mackenzie, Lea, Liena, Loongana and Rowallan<br>maps) near Central Highlands                                            | To Central<br>Highlands |                                                                                               |
| WDB                       | <i>E. delegatensis</i> forest with broadleaf shrubs | In South East on Longley and Lymington maps near Southern Ranges                                                                                                           | To Southern Ranges      |                                                                                               |
| WDB                       | <i>E. delegatensis</i> forest with broadleaf shrubs | In Ben Lomond, Central Highlands and Southern Ranges                                                                                                                       | As centroid             |                                                                                               |
| WDB                       | <i>E. delegatensis</i> forest with broadleaf shrubs | In Northern Slopes (Borradaile, Cathedral, Lake<br>Mackenzie, Lea, Liena, Liffey, Loongana, Mole<br>Creek, Quamby Bluff, Rowallan and Will maps)<br>near Central Highlands | To Central<br>Highlands |                                                                                               |
| WDB                       | <i>E. delegatensis</i> forest with broadleaf shrubs | In West (Adamsfield, Strathgordon, Tiger, Wings<br>and Wylds maps) near Southern Ranges                                                                                    | To Southern Ranges      |                                                                                               |
| WDB                       | <i>E. delegatensis</i> forest with broadleaf shrubs | In West on Achilles map near Central Highlands                                                                                                                             | To Central<br>Highlands |                                                                                               |

| REM<br>code <sup>25</sup> | Vegetation community                                    | Location &/or bioregion of assessed patches                                                                                                                                      | Allocation              | Notes                                                    |
|---------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------|
| WDB                       | <i>E. delegatensis</i> forest with broadleaf shrubs     | In Northern Midlands on O'Connors and Millers<br>maps near Central Highlands                                                                                                     | To Central<br>Highlands |                                                          |
| WDL                       | E. delegatensis forest over<br>Leptospermum             | In Northern Slopes (Aichilles, Borradaile,<br>Cathedral, Lake Mackenzie, Lea, Liena,<br>Loongana, Mole Creek, Rowallan and Will maps)<br>near Central Highlands                  | To Central<br>Highlands |                                                          |
| WDL                       | E. delegatensis forest over<br>Leptospermum             | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                                                                                    | As centroid             |                                                          |
| WDR                       | <i>E. delegatensis</i> forest over rainforest           | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                                                                                    | As centroid             |                                                          |
| WDR                       | <i>E. delegatensis</i> forest over rainforest           | In Northern Slopes (Achilles, Borradaile, Breona,<br>Cathedral, Cradle, Lake Mackenzie, Lea, Liena,<br>Loongana, Quamby Bluff, Rowallan and Will<br>maps) near Central Highlands | To Central<br>Highlands |                                                          |
| WDU                       | <i>E. delegatensis</i> wet forest (undifferentiated)    | In Northern Midlands on St John map near<br>South East                                                                                                                           | To South East           |                                                          |
| WDU                       | <i>E. delegatensis</i> wet forest<br>(undifferentiated) | In South East (Cluny, Collinsvale, Dee, Echo and Longley maps) near Southern Ranges                                                                                              | To Southern Ranges      | Some patches on Echo map allocated to Central Highlands. |
| WDU                       | <i>E. delegatensis</i> wet forest<br>(undifferentiated) | In Ben Lomond, Central Highlands, Northern<br>Slopes, Southern Ranges and West                                                                                                   | As centroid             |                                                          |
| WDU                       | <i>E. delegatensis</i> wet forest<br>(undifferentiated) | In South East (Dennistoun, Echo, Hermitage,<br>Steppes, Table and Vincents maps) near Central<br>Highlands                                                                       | To Central<br>Highlands |                                                          |
| WDU                       | <i>E. delegatensis</i> wet forest (undifferentiated)    | In Northern Midlands on Rossarden and St Pauls<br>maps near Ben Lomond                                                                                                           | To Ben Lomond           |                                                          |
| WDU                       | <i>E. delegatensis</i> wet forest (undifferentiated)    | In Northern Midlands (Bradys Lookout,<br>Ellinthorp, Millers, O'Connors, Penny, Tunbridge<br>and Vincents maps) near Central Highlands                                           | To Central<br>Highlands |                                                          |

| REM<br>code <sup>25</sup> | Vegetation community                                          | Location &/or bioregion of assessed patches                                                | Allocation              | Notes |
|---------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|-------|
| WGK                       | E. globulus King Island forest                                | In King on King Island                                                                     | As centroid             |       |
| WGL                       | E. globulus wet forest                                        | In Ben Lomond, South East and Southern<br>Ranges                                           | As centroid             |       |
| WNL                       | E. nitida forest over<br>Leptospermum                         | In Central Highlands, Southern Ranges and West                                             | As centroid             |       |
| WNL                       | E. nitida forest over<br>Leptospermum                         | In Northern Slopes (Borradaile, Lea, Liena and Loongana maps) near Central Highlands       | To Central<br>Highlands |       |
| WNR                       | <i>E. nitida</i> wet forest over rainforest                   | In Central Highlands, Southern Ranges and West                                             | As centroid             |       |
| WNR                       | <i>E. nitida</i> wet forest over rainforest                   | In Northern Slopes on Borradaile and Lea maps near Central Highlands                       | To Central<br>Highlands |       |
| WNU                       | <i>E. nitida</i> wet forest<br>(undifferentiated)             | In Northern Slopes (Cethana, Loongana, Loyetea<br>and Parrawe maps) near Central Highlands | To Central<br>Highlands |       |
| WNU                       | <i>E. nitida</i> wet forest<br>(undifferentiated)             | In Central Highlands, King, Southern Ranges and West                                       | As centroid             |       |
| WNU                       | <i>E. nitida</i> wet forest<br>(undifferentiated)             | In Northern Slopes (Cethana, Loongana, Loyetea<br>and Parrawe maps) near Central Highlands | To Central<br>Highlands |       |
| WNU                       | <i>E. nitida</i> wet forest<br>(undifferentiated)             | In Northern Slopes other than near Central Highlands                                       | As centroid             |       |
| WOB                       | <i>E. obliqua</i> forest with broadleaf shrubs                | In Ben Lomond, Northern Slopes, Southern<br>Ranges and West                                | As centroid             |       |
| WOL                       | <i>Eucalyptus obliqua</i> wet forest over <i>Leptospermum</i> | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                              | As centroid             |       |
| WOL                       | Eucalyptus obliqua wet forest<br>over Leptospermum            | In South East on Cygnet and Lymington maps<br>near Southern Ranges                         | To Southern Ranges      |       |
| WOR                       | <i>E. obliqua</i> wet forest over rainforest                  | In Ben Lomond, Northern Slopes, Southern<br>Ranges and West                                | As centroid             |       |

| REM<br>code <sup>25</sup> | Vegetation community                               | Location &/or bioregion of assessed patches                                                                                                                                                                                   | Allocation         | Notes                                                                                                                      |
|---------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| WOU                       | <i>E. obliqua</i> wet forest<br>(undifferentiated) | In South East (Adventure Bay, Blackmans Bay,<br>Bushy Park, Cluny, Collinsvale, Cygnet, Dee,<br>Dobson, Hobart, Huonville, Longley, Lymington,<br>New Norfolk, Strickland, Taroona and Uxbridge<br>maps) near Southern Ranges | To Southern ranges | Rest of South East tagged to centroid.<br>Bioregion boundary along d'Entrecasteaux<br>Channel possibly needs reassessment. |
| WOU                       | <i>E. obliqua</i> wet forest<br>(undifferentiated) | In Central Highlands (Baretop, Block, Charter,<br>Cradle, Dundas, Luina, Roseberry, Selina, Tullah<br>and Waratah maps) near West                                                                                             | To West            |                                                                                                                            |
| WOU                       | <i>E. obliqua</i> wet forest<br>(undifferentiated) | In Northern Midlands on Rossarden map near<br>Ben Lomond                                                                                                                                                                      | To Ben Lomond      |                                                                                                                            |
| WOU                       | <i>E. obliqua</i> wet forest<br>(undifferentiated) | In Northern Midlands on Bridgenorth, Cluan and Liffey maps near Northern Slopes                                                                                                                                               | To Northern Slopes |                                                                                                                            |
| WOU                       | <i>E. obliqua</i> wet forest<br>(undifferentiated) | In Ben Lomond, Flinders, King, Northern Slopes,<br>Southern Ranges and West                                                                                                                                                   | As centroid        |                                                                                                                            |
| WOU                       | <i>E. obliqua</i> wet forest<br>(undifferentiated) | In Central Highlands (Baretop, Cethana, Gog,<br>Lea, Liena, Liffey, Mole Creek, Poatina, Quamby<br>Bluff, Sheffield and Wilmot maps) near<br>Northern Slopes                                                                  | To Northern Slopes |                                                                                                                            |
| WRE                       | <i>E. regnans</i> forest                           | In Central Highlands on Penny map                                                                                                                                                                                             | Retagged to "DRO"  | Correct place in landscape and range, and mapped as DRO by RFA and Tasveg 3.0.                                             |
| WRE                       | <i>E. regnans</i> forest                           | In South East (Bushy Park, Collinsvale, Dobson,<br>Hobart, Longley, Lymington and Taroona maps)<br>near Southern Ranges                                                                                                       | To Southern Ranges | Rest of South East tagged as centroid.<br>Lymington retag doesn't include Port Cygnet<br>patch.                            |
| WRE                       | <i>E. regnans</i> forest                           | In Central Highlands on Cethana and Gog maps<br>near Northern Slope                                                                                                                                                           | To Northern Slopes |                                                                                                                            |
| WRE                       | <i>E. regnans</i> forest                           | In Central Highlands on Algonkian map near<br>Southern Ranges                                                                                                                                                                 | To Southern Ranges |                                                                                                                            |

| REM<br>code <sup>25</sup> | Vegetation community                       | Location &/or bioregion of assessed patches                                                                                             | Allocation              | Notes                                                    |
|---------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------|
| WRE                       | <i>E. regnans</i> forest                   | In Flinders on Brilliant, Scottsdale and Spurrs<br>Rivulet maps near Ben Lomond                                                         | To Ben Lomond           |                                                          |
| WRE                       | <i>E. regnans</i> forest                   | In West (Adamsfield, Algonkian, Precipitous and Tiger maps) near Southern Ranges                                                        | To Southern Ranges      |                                                          |
| WRE                       | <i>E. regnans</i> forest                   | In Ben Lomond, King, Northern Slopes and Southern Ranges                                                                                | As centroid             |                                                          |
| WSU                       | <i>E. subcrenulata</i> forest and woodland | In Ben Lomond, Central Highlands, Southern<br>Ranges and West                                                                           | As centroid             |                                                          |
| WSU                       | <i>E. subcrenulata</i> forest and woodland | In South East on Collinsvale and Longley maps near Southern Ranges                                                                      | To Southern Ranges      |                                                          |
| WSU                       | <i>E. subcrenulata</i> forest and woodland | In Northern Slopes (Achilles, Borradaile,<br>Cathedral, Cradle, Lea, Liena, Loongana,<br>Rowallan and Will maps) near Central Highlands | To Central<br>Highlands |                                                          |
| WVI                       | E. viminalis wet forest                    | In Flinders on Lanka map near Ben Lomond                                                                                                | To Ben Lomond           |                                                          |
| WVI                       | E. viminalis wet forest                    | In Ben Lomond, King, Northern Slopes, South<br>East, Southern Ranges and West                                                           | As centroid             | King potentially fuzzy if most westerly patch incorrect. |
| WVI                       | <i>E. viminalis</i> wet forest             | In Northern Midlands on Dilston and Liffey<br>maps near Northern Slopes                                                                 | To Northern Slopes      | Rest of Northern Midlands tagged as centroid.            |
| WVI                       | <i>E. viminalis</i> wet forest             | In Ben Lomond on Evandale map near Northern<br>Midlands                                                                                 | To Northern<br>Midlands | This is a riparian patch on the Nile River.              |
| WVI                       | <i>E. viminalis</i> wet forest             | In Central Highlands on Cethana, Gog and Liena maps near Northern Slopes                                                                | To Northern Slopes      |                                                          |
| WVI                       | <i>E. viminalis</i> wet forest             | In Flinders on Latrobe and Ulverstone maps<br>near Northern Slopes                                                                      | To Northern Slopes      |                                                          |
## ATTACHMENT 10. CONSERVATION AND RESERVATION STATUS OF OLD GROWTH FORESTS

#### KEY

#### Classification

RFA code – RFA code of forest community used for analysis against JANIS.

- Tasveg-RFA equiv. Current Tasveg equivalent of RFA community (see Section 3.2.2 of main report and Attachment 8).
- IBRA region Code for the IBRA bioregion. BL Ben Lomond, CH Central Highlands, FL – Flinders, KI - King, NM – Northern Midlands, NS – Northern Slopes, SE – South East, SR – Southern Ranges, WSW – West.

#### Type 1 old growth

Area (ha) – Current mapped area of the old growth of the forest community.

- Comm % Percentage of the extant area of the forest community that is old growth.
- Status JANIS conservation status of the old growth of the community in the bioregion. p present but not threatened, D Depleted, R Rare, RD Rare and Depleted.
- *Target desc.* JANIS descriptor of the reservation target associated with the conservation status. 60% 60% of the extant area of old growth, 100% 100% of the extant area of old growth.
- Target (ha) JANIS reservation target for old growth in the bioregion in hectares.
- *Resv.* (*ha*) Area of old growth currently in reserves.
- Short % Percentage shortfall of current reservation on the reservation target.
- *OG1 index* Reservation index for type 1 old growth forest (see section 4.2.3 of main report).
- FMU area (ha) Area of the type 1 old growth of the forest community in the FMU.

#### Type 2 old growth

- Area (ha) Area of type 2 old growth of the forest community (see section 4.2.2 for definition).
- *Resv.* (*ha*) Current reserved area of type 2 old growth of the forest community.
- Unres. (ha) Current area of type 2 old growth that is outside of reserves.
- *Ha T1 target* The area of type 2 old growth that would be needed to meet the reservation shortfall for type 1 old growth.
- % to T1 target The percentage of the area of type 2 old growth that would be needed to meet the reservation shortfall for type 1 old growth. The percentage is 0 where the area of type 2 in reserves exceeds the reservation shortfall for type 1 old growth.
- *OG2 index* Reservation index for type 2 old growth forest (see section 4.2.4 of main report).
- FMU area (ha) Area of the type 2 old growth of the forest community in the FMU.

| C           | lassificat               | ion            |              |           |        | Type 1          | old grow       | /th           |            |              |             |              |               | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| AC          | DAC                      | BL             | 6,370        | 13.1      | р      | 60%             | 3,812          | 5,620         | 0.0        | 0            | 333         | 9,227        | 5,380         | 3,847         | 0               | 0.0            | 0            | 2,478       |
| AC          | DAC                      | FL             | 13,602       | 16.2      | р      | 60%             | 7,992          | 8,838         | 0.0        | 0            | 289         | 20,740       | 9,396         | 11,343        | 0               | 0.0            | 0            | 463         |
| AC          | DAC                      | KI             | 52           | 62.5      | R      | 100%            | 52             | 6             | 89.2       | 3            | 0           | 4            | 0             | 4             | 4               | 100.0          | 4            | 0           |
| AC          | DAC                      | NM             | 19           | 15.8      | R      | 100%            | 19             | 19            | 0.0        | 0            | 0           | 3            | 2             | 1             | 0               | 0.0            | 0            | 0           |
| AC          | DAC                      | NS             | 801          | 11.0      | R      | 100%            | 801            | 650           | 18.8       | 2            | 17          | 1,854        | 1,527         | 328           | 151             | 0.0            | 0            | 103         |
| AC          | DAC                      | SE             | 7,149        | 50.1      | р      | 60%             | 4,315          | 5,284         | 0.0        | 0            | 8           | 1,174        | 752           | 423           | 0               | 0.0            | 0            | 0           |
| AC          | DAC                      | SR             | 6            | 6.3       | RD     | 100%            | 6              | 3             | 50.9       | 4            | 0           | 17           | 4             | 13            | 3               | 0.0            | 0            | 0           |
| AD          | DAD                      | BL             | 1,961        | 6.0       | D      | 100%            | 1,961          | 1,180         | 39.8       | 4            | 114         | 8,785        | 2,183         | 6,602         | 781             | 0.0            | 0            | 382         |
| AD          | DAD                      | СН             | 253          | 6.3       | RD     | 100%            | 253            | 93            | 63.1       | 4            | 85          | 92           | 13            | 80            | 92              | 100.0          | 4            | 17          |
| AD          | DAD                      | FL             | 207          | 4.3       | RD     | 100%            | 207            | 100           | 51.8       | 4            | 0           | 952          | 21            | 931           | 107             | 11.2           | 2            | 10          |
| AD          | DAD                      | NM             | 775          | 2.9       | RD     | 100%            | 775            | 604           | 22.0       | 3            | 59          | 2,026        | 182           | 1,845         | 170             | 0.0            | 0            | 5           |
| AD          | DAD                      | NS             | 362          | 3.6       | RD     | 100%            | 362            | 227           | 37.3       | 4            | 96          | 878          | 326           | 552           | 135             | 0.0            | 0            | 231         |
| AD          | DAD                      | SE             | 29,044       | 36.4      | р      | 60%             | 17,490         | 21,328        | 0.0        | 0            | 2,328       | 8,167        | 1,200         | 6,967         | 0               | 0.0            | 0            | 156         |
| AD          | DAD                      | SR             | 618          | 18.9      | R      | 100%            | 618            | 574           | 7.1        | 1            | 91          | 156          | 31            | 125           | 44              | 28.2           | 2            | 46          |
| AM          | DAM                      | BL             | 1,208        | 6.2       | D      | 100%            | 1,208          | 941           | 22.2       | 3            | 216         | 3,631        | 1,796         | 1,835         | 268             | 0.0            | 0            | 513         |
| AM          | DAM                      | FL             | 56           | 2.6       | RD     | 100%            | 56             | 39            | 29.8       | 3            | 0           | 392          | 225           | 167           | 17              | 0.0            | 0            | 9           |
| AM          | DAM                      | NM             | 308          | 5.0       | RD     | 100%            | 308            | 79            | 74.3       | 4            | 0           | 597          | 323           | 274           | 229             | 0.0            | 0            | 19          |
| AM          | DAM                      | NS             | 119          | 3.1       | RD     | 100%            | 119            | 84            | 29.3       | 3            | 5           | 213          | 38            | 174           | 35              | 0.0            | 0            | 77          |
| AM          | DAM                      | SE             | 1,777        | 29.1      | р      | 60%             | 1,068          | 790           | 26.1       | 2            | 0           | 545          | 301           | 244           | 278             | 0.0            | 0            | 0           |
| AM          | DAM                      | SR             | 72           | 24.9      | R      | 100%            | 72             | 55            | 23.9       | 2            | 0           | 23           | 5             | 18            | 17              | 73.6           | 4            | 0           |
| AS          | DAS                      | BL             | 347          | 6.3       | RD     | 100%            | 347            | 293           | 15.7       | 3            | 35          | 501          | 119           | 382           | 54              | 0.0            | 0            | 20          |
| AS          | DAS                      | NM             | 168          | 5.7       | RD     | 100%            | 168            | 118           | 29.8       | 3            | 6           | 688          | 59            | 628           | 50              | 0.0            | 0            | 0           |
| AS          | DAS                      | NS             | 760          | 8.9       | RD     | 100%            | 760            | 672           | 11.6       | 3            | 64          | 1,948        | 1,637         | 311           | 88              | 0.0            | 0            | 184         |
| AS          | DAS                      | SE             | 7,563        | 25.9      | р      | 60%             | 4,534          | 4,585         | 0.0        | 0            | 757         | 2,378        | 382           | 1,995         | 0               | 0.0            | 0            | 69          |
| AS          | DAS                      | SR             | 65           | 9.7       | RD     | 100%            | 65             | 47            | 27.0       | 3            | 0           | 167          | 9             | 158           | 18              | 10.5           | 2            | 0           |

| C           | lassificat               | ion            | _            |           | _      | Type 1          | old grow       | /th           | _          | _            |             |              |               | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| AIC         | DAZ                      | BL             | 39           | 0.8       | RD     | 100%            | 39             | 28            | 26.9       | 3            | 0           | 146          | 91            | 55            | 10              | 0.0            | 0            | 1           |
| AIC         | DAZ                      | NM             | 2,552        | 12.0      | D      | 100%            | 2,552          | 873           | 65.8       | 4            | 0           | 1,519        | 381           | 1,138         | 1,519           | 100.0          | 4            | 0           |
| AIC         | DAZ                      | NS             | 12           | 0.7       | RD     | 100%            | 12             | 0             | 100.0      | 4            | 0           | 191          | 27            | 164           | 12              | 0.0            | 0            | 17          |
| AIC         | DAZ                      | SE             | 162          | 17.5      | R      | 100%            | 162            | 50            | 69.1       | 3            | 0           | 93           | 5             | 88            | 93              | 100.0          | 4            | 0           |
| С           | DCO                      | BL             | 115          | 9.8       | RD     | 100%            | 115            | 115           | 0.3        | 2            | 0           | 67           | 62            | 5             | 0               | 0.0            | 0            | 4           |
| С           | DCO                      | СН             | 24,790       | 25.9      | р      | 60%             | 14,872         | 22,324        | 0.0        | 0            | 447         | 4,022        | 2,992         | 1,030         | 0               | 0.0            | 0            | 239         |
| С           | DCO                      | SE             | 73           | 19.3      | R      | 100%            | 73             | 22            | 69.7       | 3            | 56          | 0            | 0             | 0             | 0               | 100.0          | 4            | 0           |
| С           | DCO                      | SR             | 6,292        | 29.0      | р      | 60%             | 3,776          | 6,267         | 0.0        | 0            | 60          | 712          | 709           | 3             | 0               | 0.0            | 0            | 13          |
| С           | DCO                      | WSW            | 195          | 8.6       | RD     | 100%            | 195            | 195           | 0.0        | 0            | 0           | 5            | 5             | 0             | 0               | 0.0            | 0            | 0           |
| D           | DDE                      | BL             | 6,796        | 14.2      | р      | 60%             | 4,146          | 5,771         | 0.0        | 0            | 955         | 7,380        | 5,539         | 1,841         | 0               | 0.0            | 0            | 1,481       |
| D           | DDE                      | СН             | 21,667       | 18.9      | р      | 60%             | 12,973         | 16,507        | 0.0        | 0            | 2,359       | 14,427       | 6,725         | 7,702         | 0               | 0.0            | 0            | 2,156       |
| D           | DDE                      | NS             | 1,862        | 21.1      | р      | 60%             | 1,117          | 1,607         | 0.0        | 0            | 283         | 1,107        | 858           | 249           | 0               | 0.0            | 0            | 272         |
| D           | DDE                      | SE             | 17,948       | 35.0      | р      | 60%             | 10,782         | 9,820         | 8.9        | 1            | 4,607       | 3,300        | 392           | 2,908         | 962             | 29.2           | 0            | 494         |
| D           | DDE                      | SR             | 10,435       | 27.3      | р      | 60%             | 6,269          | 8,447         | 0.0        | 0            | 3,449       | 4,821        | 3,076         | 1,745         | 0               | 0.0            | 0            | 1,635       |
| D           | DDE                      | WSW            | 819          | 54.8      | R      | 100%            | 819            | 707           | 13.7       | 2            | 56          | 25           | 20            | 4             | 25              | 100.0          | 4            | 0           |
| GG          | DGL                      | BL             | 2            | 0.7       | RD     | 100%            | 2              | 2             | 0.0        | 0            | 0           | 10           | 10            | 0             | 0               | 0.0            | 0            | 0           |
| GG          | DGL                      | FL             | 1            | 0.1       | RD     | 100%            | 1              | 1             | 0.0        | 0            | 0           | 189          | 93            | 97            | 0               | 0.0            | 0            | 0           |
| GG          | DGL                      | SE             | 5,710        | 22.6      | р      | 60%             | 3,499          | 2,240         | 36.0       | 3            | 84          | 3,064        | 838           | 2,226         | 1,259           | 41.1           | 0            | 0           |
| GG          | DGL                      | SR             | 18           | 6.0       | RD     | 100%            | 18             | 6             | 66.2       | 4            | 4           | 49           | 8             | 40            | 12              | 24.3           | 2            | 0           |
| N           | DNI                      | СН             | 958          | 27.9      | R      | 100%            | 958            | 852           | 11.1       | 2            | 37          | 102          | 90            | 12            | 102             | 100.0          | 4            | 2           |
| N           | DNI                      | KI             | 4,906        | 37.0      | р      | 60%             | 2,939          | 2,309         | 21.4       | 2            | 344         | 1,038        | 628           | 410           | 630             | 60.7           | 0            | 143         |
| N           | DNI                      | NS             | 930          | 30.3      | R      | 100%            | 930            | 894           | 3.9        | 1            | 83          | 158          | 149           | 8             | 36              | 0.0            | 0            | 11          |
| N           | DNI                      | SR             | 2,874        | 30.0      | р      | 60%             | 1,724          | 2,861         | 0.0        | 0            | 3           | 455          | 452           | 3             | 0               | 0.0            | 0            | 4           |
| N           | DNI                      | WSW            | 10,766       | 47.9      | р      | 60%             | 6,459          | 10,180        | 0.0        | 0            | 678         | 679          | 608           | 71            | 0               | 0.0            | 0            | 54          |
| 0           | DOB                      | BL             | 1,848        | 8.5       | D      | 100%            | 1,848          | 1,465         | 20.7       | 3            | 408         | 4,056        | 2,329         | 1,727         | 383             | 0.0            | 0            | 1,027       |
| 0           | DOB                      | FL             | 1,383        | 26.2      | р      | 60%             | 1,000          | 1,243         | 0.0        | 0            | 82          | 602          | 372           | 230           | 0               | 0.0            | 0            | 98          |

| C           | lassificat               | ion            | -            |           |        | Type 1          | old grow       | <i>yth</i>    |            | -            | -           | -            |               | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| 0           | DOB                      | KI             | 2,095        | 24.2      | р      | 60%             | 1,266          | 896           | 29.2       | 2            | 379         | 807          | 378           | 429           | 370             | 0.0            | 0            | 29          |
| 0           | DOB                      | NS             | 4,250        | 13.4      | р      | 60%             | 2,527          | 3,492         | 0.0        | 0            | 935         | 4,364        | 3,425         | 939           | 0               | 0.0            | 0            | 555         |
| 0           | DOB                      | SE             | 14,563       | 27.5      | р      | 60%             | 8,769          | 9,258         | 0.0        | 0            | 1,828       | 3,838        | 1,586         | 2,252         | 0               | 0.0            | 0            | 88          |
| 0           | DOB                      | SR             | 5,988        | 16.2      | р      | 60%             | 3,651          | 4,096         | 0.0        | 0            | 1,291       | 3,988        | 1,628         | 2,360         | 0               | 0.0            | 0            | 664         |
| 0           | DOB                      | WSW            | 6,941        | 67.0      | р      | 60%             | 4,174          | 6,401         | 0.0        | 0            | 215         | 568          | 503           | 65            | 0               | 0.0            | 0            | 20          |
| ov          | DOV                      | BL             | 47           | 1.7       | RD     | 100%            | 47             | 16            | 65.6       | 4            | 12          | 351          | 50            | 300           | 31              | 0.0            | 0            | 60          |
| OV          | DOV                      | FL             | 46           | 3.9       | RD     | 100%            | 46             | 41            | 10.3       | 3            | 0           | 340          | 224           | 116           | 5               | 0.0            | 0            | 0           |
| ov          | DOV                      | KI             | 58           | 18.9      | R      | 100%            | 58             | 0             | 99.7       | 3            | 0           | 90           | 70            | 20            | 58              | 0.0            | 0            | 0           |
| ov          | DOV                      | NM             | 157          | 1.4       | RD     | 100%            | 157            | 47            | 69.9       | 4            | 0           | 186          | 29            | 157           | 110             | 59.1           | 4            | 1           |
| ov          | DOV                      | NS             | 140          | 3.6       | RD     | 100%            | 140            | 55            | 60.8       | 4            | 1           | 167          | 82            | 85            | 85              | 51.1           | 4            | 36          |
| ov          | DOV                      | SE             | 407          | 11.3      | R      | 100%            | 407            | 299           | 26.6       | 2            | 22          | 188          | 43            | 145           | 108             | 57.7           | 4            | 8           |
| ov          | DOV                      | SR             | 71           | 14.0      | R      | 100%            | 71             | 51            | 28.0       | 2            | 0           | 88           | 14            | 74            | 20              | 22.5           | 2            | 0           |
| ov          | DOV                      | WSW            | 218          | 41.7      | R      | 100%            | 218            | 218           | 0.0        | 0            | 0           | 2            | 1             | 0             | 0               | 0.0            | 0            | 0           |
| PJ          | DPD                      | BL             | 28           | 6.6       | RD     | 100%            | 28             | 27            | 3.6        | 2            | 8           | 175          | 55            | 120           | 1               | 0.0            | 0            | 52          |
| PJ          | DPD                      | СН             | 3,156        | 17.2      | р      | 60%             | 1,895          | 2,778         | 0.0        | 0            | 73          | 2,381        | 670           | 1,711         | 0               | 0.0            | 0            | 169         |
| PJ          | DPD                      | NM             | 8            | 0.9       | RD     | 100%            | 8              | 1             | 84.1       | 4            | 0           | 11           | 0             | 11            | 7               | 61.7           | 4            | 0           |
| PJ          | DPD                      | SE             | 859          | 16.2      | R      | 100%            | 859            | 752           | 12.4       | 2            | 6           | 495          | 96            | 398           | 107             | 21.6           | 2            | 5           |
| PJ          | DPD                      | SR             | 3,106        | 18.2      | р      | 60%             | 1,867          | 2,868         | 0.0        | 0            | 788         | 2,965        | 1,956         | 1,009         | 0               | 0.0            | 0            | 1,385       |
| PS          | DPO                      | BL             | 3            | 4.4       | RD     | 100%            | 3              | 3             | 0.0        | 0            | 0           | 141          | 54            | 87            | 0               | 0.0            | 0            | 40          |
| PS          | DPO                      | СН             | 20           | 1.8       | RD     | 100%            | 20             | 0             | 100.0      | 4            | 0           | 260          | 7             | 253           | 20              | 7.8            | 2            | 0           |
| PS          | DPO                      | FL             | 11           | 40.4      | R      | 100%            | 11             | 8             | 32.1       | 3            | 0           | 0            | 0             | 0             | 0               | 100.0          | 4            | 0           |
| PS          | DPO                      | SE             | 557          | 9.8       | RD     | 100%            | 557            | 102           | 81.6       | 4            | 4           | 857          | 29            | 828           | 455             | 53.1           | 4            | 1           |
| PS          | DPO                      | SR             | 0            | 25.8      | R      | 100%            | 0              | 0             | 0.0        | 0            | 0           | 139          | 6             | 133           | 0               | 0.0            | 0            | 5           |
| Р           | DPU                      | BL             | 5            | 3.3       | RD     | 100%            | 5              | 1             | 83.5       | 4            | 5           | 34           | 9             | 25            | 4               | 0.0            | 0            | 2           |
| Р           | DPU                      | SE             | 52,296       | 40.3      | р      | 60%             | 31,650         | 31,754        | 0.0        | 0            | 2,072       | 11,670       | 2,750         | 8,920         | 0               | 0.0            | 0            | 189         |
| Р           | DPU                      | SR             | 383          | 3.9       | RD     | 100%            | 383            | 94            | 75.4       | 4            | 22          | 1,524        | 338           | 1,186         | 289             | 0.0            | 0            | 66          |

| C           | lassificat               | ion            |              |           | _      | Type 1          | old grow       | vth           |            |              |             |              |               | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| RI          | DRI                      | SE             | 24           | 3.1       | RD     | 100%            | 24             | 17            | 27.7       | 3            | 0           | 56           | 31            | 25            | 7               | 0.0            | 0            | 0           |
| RO          | DRO                      | BL             | 47           | 5.1       | RD     | 100%            | 47             | 33            | 28.6       | 3            | 9           | 169          | 87            | 82            | 13              | 0.0            | 0            | 41          |
| RO          | DRO                      | СН             | 217          | 3.8       | RD     | 100%            | 217            | 114           | 47.1       | 4            | 21          | 641          | 73            | 568           | 102             | 15.9           | 2            | 10          |
| RO          | DRO                      | NM             | 21           | 3.3       | RD     | 100%            | 21             | 14            | 35.5       | 4            | 0           | 1            | 0             | 1             | 1               | 100.0          | 4            | 0           |
| RO          | DRO                      | NS             | 5            | 2.9       | RD     | 100%            | 5              | 1             | 86.5       | 4            | 0           | 15           | 7             | 8             | 4               | 0.0            | 0            | 0           |
| RO          | DRO                      | SE             | 875          | 29.2      | R      | 100%            | 875            | 252           | 71.2       | 3            | 111         | 302          | 16            | 286           | 302             | 100.0          | 4            | 7           |
| RO          | DRO                      | SR             | 150          | 6.3       | RD     | 100%            | 150            | 123           | 17.7       | 3            | 84          | 319          | 216           | 103           | 26              | 0.0            | 0            | 120         |
| DSC         | DSC                      | BL             | 431          | 9.0       | RD     | 100%            | 431            | 305           | 29.2       | 3            | 153         | 1,591        | 640           | 951           | 126             | 0.0            | 0            | 532         |
| DSC         | DSC                      | FL             | 14           | 1.4       | RD     | 100%            | 14             | 12            | 17.3       | 3            | 1           | 68           | 23            | 45            | 2               | 0.0            | 0            | 2           |
| DSC         | DSC                      | NM             | 88           | 10.8      | R      | 100%            | 88             | 84            | 4.0        | 1            | 1           | 122          | 109           | 13            | 4               | 0.0            | 0            | 11          |
| DSC         | DSC                      | NS             | 1,578        | 4.6       | D      | 100%            | 1,578          | 1,309         | 17.1       | 3            | 410         | 1,596        | 916           | 680           | 269             | 0.0            | 0            | 277         |
| DSC         | DSC                      | SE             | 17           | 12.6      | R      | 100%            | 17             | 0             | 99.9       | 3            | 18          | 35           | 0             | 35            | 17              | 48.7           | 3            | 24          |
| SG          | DSG                      | BL             | 1,069        | 4.0       | D      | 100%            | 1,069          | 963           | 9.9        | 2            | 149         | 3,701        | 2,800         | 901           | 105             | 0.0            | 0            | 541         |
| SG          | DSG                      | FL             | 192          | 2.5       | RD     | 100%            | 192            | 158           | 17.9       | 3            | 113         | 1,472        | 702           | 770           | 34              | 0.0            | 0            | 684         |
| SG          | DSG                      | SE             | 329          | 77.7      | R      | 100%            | 329            | 321           | 2.5        | 1            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| SO          | DSO                      | BL             | 1,036        | 3.4       | D      | 100%            | 1,036          | 792           | 23.6       | 3            | 330         | 5,197        | 3,832         | 1,365         | 244             | 0.0            | 0            | 848         |
| SO          | DSO                      | FL             | 414          | 3.8       | RD     | 100%            | 414            | 123           | 70.2       | 4            | 60          | 2,145        | 1,477         | 668           | 290             | 0.0            | 0            | 528         |
| SO          | DSO                      | SE             | 934          | 72.9      | R      | 100%            | 934            | 854           | 8.6        | 1            | 0           | 92           | 66            | 26            | 81              | 87.4           | 4            | 0           |
| TD          | DTD                      | SE             | 5,031        | 50.1      | р      | 60%             | 3,018          | 4,293         | 0.0        | 0            | 372         | 627          | 392           | 236           | 0               | 0.0            | 0            | 81          |
| TD          | DTD                      | SR             | 8            | 39.6      | R      | 100%            | 8              | 8             | 0.9        | 1            | 0           | 111          | 40            | 71            | 0               | 0.0            | 0            | 0           |
| Т           | DTG                      | SE             | 2,964        | 83.7      | р      | 60%             | 1,778          | 2,848         | 0.0        | 0            | 0           | 90           | 84            | 6             | 0               | 0.0            | 0            | 0           |
| ті          | DTO                      | SE             | 7,485        | 15.5      | р      | 60%             | 4,499          | 3,305         | 26.5       | 2            | 179         | 8,064        | 1,891         | 6,173         | 1,194           | 0.0            | 0            | 379         |
| TI          | DTO                      | SR             | 2            | 0.6       | RD     | 100%            | 2              | 0             | 100.0      | 4            | 0           | 43           | 11            | 32            | 2               | 0.0            | 0            | 0           |
| TI          | DTO                      | WSW            | 153          | 51.8      | R      | 100%            | 153            | 153           | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| G           | DVC                      | КІ             | 3            | 9.6       | RD     | 100%            | 3              | 0             | 100.0      | 4            | 0           | 69           | 69            | 0             | 3               | 0.0            | 0            | 0           |
| G           | DVC                      | SE             | 378          | 36.4      | R      | 100%            | 378            | 237           | 37.4       | 3            | 0           | 268          | 219           | 48            | 141             | 0.0            | 0            | 0           |

| C           | lassificat               | ion            | _            |           | _      | Type 1          | old grow       | /th           | _          | _            | _           |              | _             | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| G           | DVC                      | WSW            | 13           | 25.1      | R      | 100%            | 13             | 0             | 100.0      | 3            | 13          | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| v           | DVG                      | BL             | 172          | 1.6       | RD     | 100%            | 172            | 37            | 78.6       | 4            | 3           | 1,299        | 246           | 1,053         | 135             | 0.0            | 0            | 54          |
| v           | DVG                      | КІ             | 1            | 0.1       | RD     | 100%            | 1              | 1             | 46.7       | 4            | 0           | 7            | 7             | 1             | 0               | 0.0            | 0            | 0           |
| v           | DVG                      | NM             | 3,024        | 9.0       | D      | 100%            | 3,024          | 982           | 67.5       | 4            | 1           | 2,560        | 259           | 2,301         | 2,042           | 79.8           | 4            | 0           |
| v           | DVG                      | NS             | 6            | 0.4       | RD     | 100%            | 6              | 5             | 22.6       | 3            | 0           | 66           | 4             | 62            | 1               | 0.0            | 0            | 0           |
| v           | DVG                      | SE             | 6,650        | 8.8       | D      | 100%            | 6,650          | 2,090         | 68.6       | 4            | 164         | 9,663        | 1,051         | 8,612         | 4,560           | 47.2           | 3            | 101         |
| v           | DVG                      | SR             | 28           | 7.3       | RD     | 100%            | 28             | 11            | 59.1       | 4            | 2           | 18           | 8             | 10            | 16              | 90.5           | 4            | 0           |
| AV          | NAV                      | BL             | 17           | 1.7       | RD     | 100%            | 17             | 3             | 79.5       | 4            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| AV          | NAV                      | FL             | 322          | 2.3       | RD     | 100%            | 322            | 269           | 16.4       | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| AV          | NAV                      | NM             | 0            | 0.0       | RD     | 100%            | 0              | 0             | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| AV          | NAV                      | SE             | 523          | 27.9      | R      | 100%            | 523            | 366           | 30.1       | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| AV          | NAV                      | SR             | 16           | 18.3      | R      | 100%            | 16             | 1             | 94.3       | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| BS          | NBS                      | КІ             | 85           | 54.4      | R      | 100%            | 85             | 67            | 21.1       | 2            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| CR          | NCR                      | SE             | 511          | 77.2      | R      | 100%            | 511            | 319           | 37.5       | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | BL             | 3            | 23.0      | R      | 100%            | 3              | 3             | 18.0       | 2            | 3           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | СН             | 16           | 13.5      | R      | 100%            | 16             | 15            | 6.0        | 1            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | FL             | 13           | 37.2      | R      | 100%            | 13             | 13            | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | KI             | 185          | 4.5       | RD     | 100%            | 185            | 133           | 28.4       | 3            | 31          | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | NS             | 141          | 14.4      | R      | 100%            | 141            | 80            | 43.1       | 3            | 7           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | SE             | 20           | 24.9      | R      | 100%            | 20             | 18            | 7.4        | 1            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | SR             | 107          | 13.9      | R      | 100%            | 107            | 102           | 4.8        | 1            | 6           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| L           | NLM                      | WSW            | 2,013        | 32.8      | р      | 60%             | 1,212          | 1,935         | 0.0        | 0            | 86          | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| ME          | NME                      | BL             | 3            | 1.2       | RD     | 100%            | 3              | 0             | 84.2       | 4            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| ME          | NME                      | FL             | 188          | 6.0       | RD     | 100%            | 188            | 115           | 38.8       | 4            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| ME          | NME                      | КІ             | 47           | 1.2       | RD     | 100%            | 47             | 4             | 91.9       | 4            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| ME          | NME                      | NS             | 0            | 0.0       | RD     | 100%            | 0              | 0             | 40.0       | 4            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |

| C           | lassificat               | ion            | _            |           | _      | Type 1          | old grow       | /th           |            | _            | _           |              |               | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| ME          | NME                      | SE             | 4            | 11.4      | R      | 100%            | 4              | 4             | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| ME          | NME                      | WSW            | 48           | 26.5      | R      | 100%            | 48             | 38            | 20.1       | 2            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| NP          | NNP                      | BL             | 2            | 25.2      | R      | 100%            | 2              | 1             | 37.2       | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| NP          | NNP                      | КІ             | 5            | 67.5      | R      | 100%            | 5              | 2             | 63.1       | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| NP          | NNP                      | NS             | 19           | 18.5      | R      | 100%            | 19             | 5             | 72.9       | 3            | 11          | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| NP          | NNP                      | SE             | 2            | 13.3      | R      | 100%            | 2              | 2             | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| NP          | NNP                      | WSW            | 17           | 80.0      | R      | 100%            | 17             | 16            | 2.1        | 1            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| н           | RHP                      | СН             | 3            | 100.0     | R      | 100%            | 3              | 3             | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| н           | RHP                      | SR             | 90           | 76.1      | R      | 100%            | 90             | 90            | 0.0        | 0            | 19          | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| н           | RHP                      | WSW            | 12,179       | 89.4      | р      | 60%             | 7,308          | 11,608        | 0.0        | 0            | 499         | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| F           | RKF                      | СН             | 2,780        | 89.2      | р      | 60%             | 1,668          | 2,618         | 3.5        | 0            | 168         | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| F           | RKF                      | SR             | 100          | 99.9      | R      | 100%            | 100            | 100           | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| х           | RKP                      | СН             | 13,965       | 88.7      | р      | 60%             | 8,379          | 12,798        | 0.0        | 0            | 479         | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| х           | RKP                      | SR             | 9,742        | 100       | р      | 60%             | 5,845          | 9,742         | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| х           | RKP                      | WSW            | 9,850        | 92.0      | р      | 60%             | 5,910          | 9,436         | 0.0        | 0            | 194         | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M-          | RMS                      | BL             | 4,376        | 80.8      | р      | 60%             | 2,265          | 3,720         | 0.0        | 0            | 539         | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M-          | RMS                      | СН             | 13,157       | 81.9      | р      | 60%             | 7,894          | 11,325        | 0.0        | 0            | 1,580       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M-          | RMS                      | КІ             | 6,835        | 54.5      | р      | 60%             | 4,102          | 2,899         | 29.3       | 2            | 6,278       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M-          | RMS                      | NS             | 14,299       | 70.4      | р      | 60%             | 8,579          | 11,165        | 0.0        | 0            | 4,809       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M-          | RMS                      | SE             | 3            | 42.3      | R      | 100%            | 3              | 1             | 73.3       | 3            | 1           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M-          | RMS                      | SR             | 19,014       | 95.2      | р      | 60%             | 11,408         | 18,101        | 0.0        | 0            | 1,940       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M-          | RMS                      | WSW            | 122,588      | 93.9      | р      | 60%             | 73,553         | 114,182       | 0.0        | 0            | 8,684       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M+          | RMT                      | BL             | 24,154       | 83.9      | р      | 60%             | 14,492         | 18,714        | 0.0        | 0            | 6,305       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M+          | RMT                      | СН             | 48,405       | 91.3      | р      | 60%             | 29,043         | 44,952        | 0.0        | 0            | 3,944       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M+          | RMT                      | KI             | 7,293        | 82.6      | р      | 60%             | 4,376          | 4,856         | 0.0        | 0            | 3,447       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M+          | RMT                      | NS             | 20,873       | 65.0      | р      | 60%             | 12,524         | 18,654        | 0.0        | 0            | 3,730       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |

| C           | lassificat               | ion            |              |           | _      | Type 1          | old grow       | vth           |            | _            | _           |              |               | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| M+          | RMT                      | SE             | 505          | 81.8      | R      | 100%            | 505            | 466           | 7.7        | 1            | 29          | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M+          | RMT                      | SR             | 45,325       | 98.8      | р      | 60%             | 27,195         | 44,839        | 0.0        | 0            | 1,126       | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| M+          | RMT                      | WSW            | 263,343      | 98.7      | р      | 60%             | 158,006        | 253,919       | 0.0        | 0            | 10,502      | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| PD          | RPF                      | СН             | 4,401        | 100.0     | р      | 60%             | 2,641          | 4,401         | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| PD          | RPF                      | SR             | 34           | 100       | R      | 100%            | 34             | 34            | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| PP          | RPP                      | СН             | 19,188       | 99.8      | R      | 60%             | 11,513         | 19,186        | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| PP          | RPP                      | SR             | 615          | 99.3      | R      | 100%            | 615            | 615           | 0.0        | 0            | 5           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| BA          | WBR                      | BL             | 1            | 9.1       | RD     | 100%            | 1              | 1             | 21.9       | 3            | 0           | 4            | 1             | 3             | 0               | 0.0            | 0            | 2           |
| BA          | WBR                      | KI             | 659          | 11.3      | R      | 100%            | 659            | 274           | 58.5       | 3            | 29          | 913          | 335           | 578           | 386             | 42.2           | 3            | 0           |
| BA          | WBR                      | NS             | 0            | 1.4       | RD     | 100%            | 0              | 0             | 77.6       | 4            | 1           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| BA          | WBR                      | SE             | 44           | 42.6      | R      | 100%            | 44             | 33            | 26.8       | 2            | 0           | 19           | 1             | 18            | 12              | 62.4           | 4            | 0           |
| BA          | WBR                      | WSW            | 178          | 60.3      | R      | 100%            | 178            | 176           | 0.8        | 1            | 2           | 6            | 6             | 0             | 2               | 0.0            | 0            | 0           |
| DT          | WDU                      | BL             | 7,924        | 16.6      | р      | 60%             | 4,754          | 4,175         | 12.2       | 2            | 2,014       | 4,013        | 2,570         | 1,443         | 579             | 0.0            | 0            | 1,272       |
| DT          | WDU                      | СН             | 30,047       | 36.6      | р      | 60%             | 18,095         | 27,613        | 0.0        | 0            | 1,878       | 5,401        | 3,528         | 1,873         | 0               | 0.0            | 0            | 1,412       |
| DT          | WDU                      | NS             | 2,208        | 19.7      | р      | 60%             | 1,327          | 1,797         | 0.0        | 0            | 468         | 1,295        | 976           | 320           | 0               | 0.0            | 0            | 356         |
| DT          | WDU                      | SE             | 8,766        | 53.4      | р      | 60%             | 5,218          | 6,030         | 0.0        | 0            | 3,407       | 738          | 508           | 231           | 0               | 0.0            | 0            | 154         |
| DT          | WDU                      | SR             | 40,792       | 48.4      | р      | 60%             | 24,707         | 37,126        | 0.0        | 0            | 6,291       | 4,674        | 3,013         | 1,661         | 0               | 0.0            | 0            | 2,014       |
| DT          | WDU                      | WSW            | 12,658       | 70.3      | р      | 60%             | 7,591          | 12,157        | 0.0        | 0            | 370         | 277          | 249           | 28            | 0               | 0.0            | 0            | 15          |
| NT          | WNU                      | СН             | 7,154        | 35.3      | р      | 60%             | 4,292          | 6,878         | 0.0        | 0            | 250         | 1,355        | 1,264         | 91            | 0               | 0.0            | 0            | 38          |
| NT          | WNU                      | KI             | 596          | 14.9      | R      | 100%            | 596            | 396           | 33.6       | 3            | 106         | 632          | 207           | 425           | 200             | 0.0            | 0            | 80          |
| NT          | WNU                      | NS             | 7,154        | 35.3      | р      | 100%            | 7,154          | 6,878         | 3.9        | 1            | 0           | 145          | 142           | 4             | 145             | 100.0          | 0            | 0           |
| NT          | WNU                      | SR             | 11,263       | 44.7      | р      | 60%             | 6,758          | 11,259        | 0.0        | 0            | 5           | 1,118        | 1,109         | 9             | 0               | 0.0            | 0            | 10          |
| NT          | WNU                      | WSW            | 75,689       | 40.1      | р      | 60%             | 45,410         | 75,195        | 0.0        | 0            | 506         | 2,563        | 2,286         | 277           | 0               | 0.0            | 0            | 128         |
| ОТ          | WOU                      | BL             | 3,093        | 6.7       | D      | 100%            | 3,093          | 2,152         | 30.4       | 4            | 1,148       | 4,519        | 2,660         | 1,859         | 942             | 0.0            | 0            | 1,378       |
| ОТ          | WOU                      | FL             | 264          | 42.3      | R      | 100%            | 264            | 220           | 16.5       | 2            | 13          | 325          | 241           | 83            | 44              | 0.0            | 0            | 78          |
| ОТ          | WOU                      | KI             | 6,729        | 12.8      | D      | 100%            | 6,729          | 3,347         | 50.3       | 4            | 3,441       | 4,392        | 1,760         | 2,632         | 3,382           | 77.0           | 4            | 608         |

| Cl          | assificat                | ion            |              |           |        | Type 1          | old grow       | <i>yth</i>    |            | -            | -           |              |               | Туре          | 2 old gro       | owth           |              |             |
|-------------|--------------------------|----------------|--------------|-----------|--------|-----------------|----------------|---------------|------------|--------------|-------------|--------------|---------------|---------------|-----------------|----------------|--------------|-------------|
| RFA<br>code | Tasveg-<br>RFA<br>equiv. | IBRA<br>region | Area<br>(ha) | Comm<br>% | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>% | OG1<br>index | FMU<br>(ha) | Area<br>(ha) | Resv.<br>(ha) | Unres<br>(ha) | Ha T1<br>target | % T1<br>target | OG2<br>index | FMU<br>(ha) |
| ОТ          | WOU                      | NS             | 7,818        | 9.4       | D      | 100%            | 7,818          | 6,464         | 17.3       | 3            | 2,120       | 4,512        | 2,899         | 1,613         | 1,354           | 0.0            | 0            | 1,245       |
| ОТ          | WOU                      | SE             | 8,020        | 27.7      | р      | 60%             | 4,878          | 6,736         | 0.0        | 0            | 1,287       | 1,585        | 1,136         | 448           | 0               | 0.0            | 0            | 205         |
| от          | WOU                      | SR             | 30,628       | 22.6      | р      | 60%             | 18,409         | 27,503        | 0.0        | 0            | 4,995       | 9,233        | 6,178         | 3,054         | 0               | 0.0            | 0            | 3,126       |
| ОТ          | WOU                      | WSW            | 27,363       | 52.7      | р      | 60%             | 16,518         | 25,448        | 0.0        | 0            | 1,980       | 6,118        | 5,197         | 921           | 0               | 0.0            | 0            | 496         |
| R           | WRE                      | BL             | 4,117        | 12.4      | р      | 60%             | 2,451          | 2,934         | 0.0        | 0            | 1,420       | 2,897        | 1,477         | 1,420         | 0               | 0.0            | 0            | 1,541       |
| R           | WRE                      | СН             | 1            | 100.0     | R      | 100%            | 1              | 0             | 100.0      | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| R           | WRE                      | NS             | 98           | 4.0       | RD     | 100%            | 98             | 87            | 11.5       | 3            | 6           | 326          | 261           | 65            | 11              | 0.0            | 0            | 61          |
| R           | WRE                      | SE             | 690          | 14.5      | R      | 100%            | 690            | 577           | 16.3       | 2            | 20          | 544          | 244           | 300           | 113             | 0.0            | 0            | 125         |
| R           | WRE                      | SR             | 7,349        | 21.6      | р      | 60%             | 4,420          | 6,077         | 0.0        | 0            | 2,040       | 1,310        | 791           | 519           | 0               | 0.0            | 0            | 397         |
| R           | WRE                      | WSW            | 550          | 65.9      | R      | 100%            | 550            | 550           | 0.0        | 0            | 0           | 57           | 57            | 0             | 0               | 0.0            | 0            | 0           |
| SU          | WSU                      | BL             | 0            | 33.0      | R      | 100%            | 0              | 0             | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| SU          | WSU                      | СН             | 7,353        | 42.6      | р      | 60%             | 4,410          | 7,315         | 0.0        | 0            | 12          | 378          | 359           | 19            | 0               | 0.0            | 0            | 10          |
| SU          | WSU                      | SR             | 4,834        | 49.3      | р      | 60%             | 2,888          | 4,790         | 0.0        | 0            | 130         | 232          | 232           | 0             | 0               | 0.0            | 0            | 5           |
| SU          | WSU                      | WSW            | 245          | 29.5      | R      | 100%            | 245            | 245           | 0.0        | 0            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| vw          | WVI                      | BL             | 53           | 4.2       | RD     | 100%            | 53             | 46            | 13.8       | 3            | 6           | 138          | 59            | 78            | 7               | 0.0            | 0            | 37          |
| vw          | WVI                      | FL             | 2            | 100.0     | R      | 100%            | 2              | 0             | 100.0      | 3            | 0           | 0            | 0             | 0             | 0               | 0.0            | 0            | 0           |
| VW          | WVI                      | NM             | 46           | 11.2      | R      | 100%            | 46             | 36            | 21.8       | 2            | 0           | 28           | 16            | 12            | 10              | 0.0            | 0            | 0           |
| vw          | WVI                      | NS             | 134          | 2.8       | RD     | 100%            | 134            | 71            | 47.1       | 4            | 51          | 233          | 91            | 143           | 63              | 0.0            | 0            | 66          |
| vw          | WVI                      | SE             | 83           | 50.5      | R      | 100%            | 83             | 69            | 16.6       | 2            | 1           | 2            | 0             | 2             | 2               | 100.0          | 4            | 0           |

### ATTACHMENT 11. CONSERVATION AND RESERVATION STATUS OF FOREST COMMUNITIES BY BIOREGION

#### KEY

RFA code – RFA code of forest community used for analysis against JANIS.

- *Tasveg-RFA equiv.* Current Tasveg equivalent of RFA community (see Section 3.2.2 of main report and Attachment 8).
- IBRA region Code for the IBRA bioregion. BL Ben Lomond, CH Central Highlands, FL – Flinders, KI - King, NM – Northern Midlands, NS – Northern Slopes, SE – South East, SR – Southern Ranges, WSW – West.
- 1750 (ha) Estimated area of the forest community in the bioregion in 1750.
- *Extant* (*ha*) Current mapped area of the forest community in the bioregion.
- Loss (ha) Estimated loss of area of the community from the bioregion since 1750.

Loss (%) – Estimated percentage loss of the community from the bioregion since 1750.

- Status JANIS conservation status of the community in the bioregion. p present but not threatened, V – Vulnerable, R – Rare, VR – Vulnerable and Rare, E – Endangered, ER – Endangered and Rare.
- *Target desc.* Descriptor of the reservation target for the community in the bioregion. 15% 1750 15% of the 1750 area, 60% comm.- 60% of the extant area of the community, 100% comm 100% of the extant area of the community.
- *Target* (*ha*) Reservation target for the community in the bioregion.
- *Resv.* (*ha*) Current reserved area of the community in the bioregion.
- *Short* (*ha*) Shortfall in hectares of current reservation on the reservation target.
- Short (%) Percentage shortfall of the area of current reservation on the reservation target.
- *Reservation index* Ecosystem reservation index for the forest community in the bioregion (see section 4.3.3 of main report).
- *Depletion index* Ecosystem depletion index for the forest community in the bioregion (see section 4.3.2 of main report).
- *FMU* (*ha*) Area of the forest community by bioregion in the FMU.

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| AC          | DAC                     | BL             | 65,322       | 49,100         | 16,222       | 24.8        | р      | 15% 1750        | 7,365          | 25,989        | 0             | 0.0          | 0                    | 0                  | 14,693      |
| AC          | DAC                     | СН             | 11           | 11             | 0            | 0.0         | R      | 100% Comm       | 11             | 11            | 0             | 0.0          | 0                    | 0                  | 0           |
| AC          | DAC                     | FL             | 132,446      | 83,649         | 48,797       | 36.8        | р      | 15% 1750        | 12,547         | 37,293        | 0             | 0.0          | 0                    | 0                  | 7,823       |
| AC          | DAC                     | КІ             | 86           | 86             | 0            | 0.0         | R      | 100% Comm       | 86             | 16            | 71            | 82.0         | 4                    | 0                  | 0           |
| AC          | DAC                     | NM             | 257          | 63             | 194          | 75.4        | VR     | 100% Comm       | 63             | 47            | 16            | 25.1         | 3                    | 2                  | 14          |
| AC          | DAC                     | NS             | 8,727        | 7,526          | 1,201        | 13.8        | р      | 15% 1750        | 1,129          | 4,227         | 0             | 0.0          | 0                    | 0                  | 738         |
| AC          | DAC                     | SE             | 23,725       | 13,994         | 9,731        | 41.0        | р      | 15% 1750        | 4,315          | 8,609         | 0             | 0.0          | 0                    | 0                  | 80          |
| AC          | DAC                     | SR             | 306          | 226            | 80           | 26.1        | R      | 100% Comm       | 226            | 134           | 92            | 40.8         | 4                    | 0                  | 0           |
| AD          | DAD                     | BL             | 49,757       | 44,092         | 5,665        | 11.4        | р      | 15% 1750        | 6,614          | 11,831        | 0             | 0.0          | 0                    | 0                  | 2,087       |
| AD          | DAD                     | СН             | 2,130        | 2,057          | 73           | 3.4         | р      | 15% 1750        | 1,000          | 466           | 534           | 53.4         | 3                    | 0                  | 221         |
| AD          | DAD                     | FL             | 6,910        | 5,008          | 1,902        | 27.5        | р      | 15% 1750        | 1,000          | 412           | 588           | 58.8         | 3                    | 0                  | 29          |
| AD          | DAD                     | NM             | 40,559       | 19,600         | 20,959       | 51.7        | р      | 15% 1750        | 2,940          | 3,520         | 0             | 0.0          | 0                    | 0                  | 296         |
| AD          | DAD                     | NS             | 13,871       | 10,796         | 3,075        | 22.2        | р      | 15% 1750        | 1,619          | 3,118         | 0             | 0.0          | 0                    | 0                  | 2,587       |
| AD          | DAD                     | SE             | 95,639       | 83,061         | 12,578       | 13.2        | р      | 15% 1750        | 17,490         | 33,678        | 0             | 0.0          | 0                    | 0                  | 5,416       |
| AD          | DAD                     | SR             | 4,108        | 2,662          | 1,446        | 35.2        | р      | 15% 1750        | 1,000          | 1,209         | 0             | 0.0          | 0                    | 0                  | 617         |
| AM          | DAM                     | BL             | 33,126       | 24,803         | 8,323        | 25.1        | р      | 15% 1750        | 3,720          | 10,243        | 0             | 0.0          | 0                    | 0                  | 5,363       |
| AM          | DAM                     | FL             | 3,239        | 2,123          | 1,116        | 34.5        | р      | 15% 1750        | 1,000          | 1,249         | 0             | 0.0          | 0                    | 0                  | 20          |
| AM          | DAM                     | NM             | 9,159        | 4,335          | 4,824        | 52.7        | р      | 15% 1750        | 1,000          | 1,490         | 0             | 0.0          | 0                    | 0                  | 54          |
| AM          | DAM                     | NS             | 4,604        | 3,808          | 796          | 17.3        | р      | 15% 1750        | 1,000          | 668           | 332           | 33.2         | 3                    | 0                  | 886         |
| AM          | DAM                     | SE             | 10,204       | 5,993          | 4,211        | 41.3        | р      | 15% 1750        | 1,068          | 1,660         | 0             | 0.0          | 0                    | 0                  | 0           |
| AM          | DAM                     | SR             | 324          | 248            | 76           | 23.5        | R      | 100% Comm       | 248            | 94            | 153           | 61.9         | 4                    | 0                  | 23          |
| AS          | DAS                     | BL             | 3,402        | 2,284          | 1,118        | 32.9        | V      | 60% Comm        | 1,371          | 909           | 462           | 33.7         | 3                    | 1                  | 302         |
| AS          | DAS                     | FL             | 84           | 80             | 4            | 4.8         | VR     | 100% Comm       | 80             | 61            | 19            | 23.7         | 3                    | 2                  | 0           |
| AS          | DAS                     | NM             | 6,290        | 2,280          | 4,010        | 63.7        | V      | 60% Comm        | 1,368          | 471           | 897           | 65.6         | 3                    | 1                  | 13          |
| AS          | DAS                     | NS             | 11,490       | 9,192          | 2,298        | 20.0        | V      | 60% Comm        | 5,515          | 5,173         | 342           | 6.2          | 1                    | 1                  | 1,491       |
| AS          | DAS                     | SE             | 95,147       | 28,408         | 66,739       | 70.1        | V      | 60% Comm        | 17,045         | 8,076         | 8,969         | 52.6         | 3                    | 1                  | 3,026       |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| AS          | DAS                     | SR             | 1,222        | 887            | 335          | 27.4        | VR     | 100% Comm       | 887            | 79            | 808           | 91.1         | 4                    | 2                  | 1           |
| AIC         | DAZ                     | BL             | 9,940        | 809            | 9,131        | 91.9        | ER     | 100% Comm       | 809            | 327           | 482           | 59.6         | 4                    | 4                  | 86          |
| AIC         | DAZ                     | NM             | 119,711      | 21,221         | 98,490       | 82.3        | V      | 60% Comm        | 12,733         | 5,660         | 7,073         | 55.5         | 3                    | 1                  | 26          |
| AIC         | DAZ                     | NS             | 3,684        | 2,087          | 1,597        | 43.3        | V      | 60% Comm        | 1,252          | 227           | 1,025         | 81.8         | 3                    | 1                  | 136         |
| AIC         | DAZ                     | SE             | 2,119        | 1,195          | 924          | 43.6        | VR     | 100% Comm       | 1,195          | 462           | 733           | 61.4         | 4                    | 2                  | 0           |
| С           | DCO                     | BL             | 1,217        | 1,217          | 0            | 0.0         | р      | 15% 1750        | 1,000          | 1,187         | 0             | 0.0          | 0                    | 0                  | 25          |
| С           | DCO                     | СН             | 100,519      | 96,072         | 4,447        | 4.4         | р      | 15% 1750        | 14,872         | 85,778        | 0             | 0.0          | 0                    | 0                  | 1,922       |
| С           | DCO                     | SE             | 536          | 384            | 152          | 28.4        | R      | 100% Comm       | 384            | 273           | 111           | 29.0         | 3                    | 0                  | 145         |
| С           | DCO                     | SR             | 21,961       | 21,766         | 195          | 0.9         | р      | 15% 1750        | 3,776          | 21,642        | 0             | 0.0          | 0                    | 0                  | 854         |
| С           | DCO                     | WSW            | 1,184        | 1,184          | 0            | 0.0         | R      | 100% Comm       | 1,184          | 1,184         | 0             | 0.0          | 0                    | 0                  | 0           |
| D           | DDE                     | BL             | 51,278       | 50,389         | 889          | 1.7         | р      | 15% 1750        | 7,558          | 27,723        | 0             | 0.0          | 0                    | 0                  | 19,602      |
| D           | DDE                     | СН             | 129,106      | 120,067        | 9,039        | 7.0         | р      | 15% 1750        | 18,010         | 42,507        | 0             | 0.0          | 0                    | 0                  | 17,967      |
| D           | DDE                     | NM             | 1,199        | 70             | 1,129        | 94.1        | ER     | 100% Comm       | 70             | 66            | 4             | 5.9          | 2                    | 4                  | 0           |
| D           | DDE                     | NS             | 10,814       | 9,072          | 1,742        | 16.1        | р      | 15% 1750        | 1,361          | 4,517         | 0             | 0.0          | 0                    | 0                  | 4,182       |
| D           | DDE                     | SE             | 67,812       | 57,392         | 10,420       | 15.4        | р      | 15% 1750        | 10,782         | 16,187        | 0             | 0.0          | 0                    | 0                  | 21,304      |
| D           | DDE                     | SR             | 47,247       | 42,345         | 4,902        | 10.4        | р      | 15% 1750        | 6,352          | 22,983        | 0             | 0.0          | 0                    | 0                  | 16,398      |
| D           | DDE                     | WSW            | 1,891        | 1,508          | 383          | 20.3        | р      | 15% 1750        | 1,000          | 1,340         | 0             | 0.0          | 0                    | 0                  | 79          |
| GG          | DGL                     | BL             | 254          | 250            | 4            | 1.6         | VR     | 100% Comm       | 250            | 174           | 76            | 30.5         | 4                    | 2                  | 4           |
| GG          | DGL                     | FL             | 1,256        | 1,009          | 247          | 19.7        | VR     | 100% Comm       | 1,009          | 384           | 625           | 62.0         | 4                    | 2                  | 0           |
| GG          | DGL                     | SE             | 44,454       | 24,794         | 19,660       | 44.2        | V      | 60% Comm        | 14,877         | 6,252         | 8,625         | 58.0         | 3                    | 1                  | 362         |
| GG          | DGL                     | SR             | 1,101        | 716            | 385          | 35.0        | VR     | 100% Comm       | 716            | 121           | 596           | 83.1         | 4                    | 2                  | 69          |
| MO          | DMO                     | SE             | 227          | 6              | 221          | 97.5        | ER     | 100% Comm       | 6              | 4             | 1             | 24.3         | 3                    | 4                  | 0           |
| NF          | DNF                     | FL             | 49,964       | 9,686          | 40,278       | 80.6        | V      | 60% Comm        | 5,811          | 5,976         | 0             | 0.0          | 0                    | 1                  | 0           |
| N           | DNI                     | СН             | 3,370        | 3,259          | 111          | 3.3         | р      | 15% 1750        | 1,000          | 2,879         | 0             | 0.0          | 0                    | 0                  | 240         |
| N           | DNI                     | КІ             | 16,231       | 13,278         | 2,953        | 18.2        | р      | 15% 1750        | 2,939          | 6,214         | 0             | 0.0          | 0                    | 0                  | 1,224       |
| N           | DNI                     | NS             | 3,463        | 3,118          | 345          | 10.0        | р      | 15% 1750        | 1,000          | 2,338         | 0             | 0.0          | 0                    | 0                  | 794         |
| N           | DNI                     | SE             | 8            | 5              | 3            | 36.0        | R      | 100% Comm       | 5              | 0             | 5             | 100.0        | 4                    | 0                  | 0           |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| N           | DNI                     | SR             | 9,496        | 9,408          | 88           | 0.9         | р      | 15% 1750        | 1,724          | 9,216         | 0             | 0.0          | 0                    | 0                  | 126         |
| N           | DNI                     | WSW            | 30,135       | 23,119         | 7,016        | 23.3        | р      | 15% 1750        | 6,459          | 20,798        | 0             | 0.0          | 0                    | 0                  | 1,919       |
| 0           | DOB                     | BL             | 41,682       | 28,497         | 13,185       | 31.6        | р      | 15% 1750        | 4,275          | 12,467        | 0             | 0.0          | 0                    | 0                  | 11,019      |
| 0           | DOB                     | FL             | 7,875        | 5,988          | 1,887        | 24.0        | р      | 15% 1750        | 1,000          | 3,596         | 0             | 0.0          | 0                    | 0                  | 1,523       |
| 0           | DOB                     | KI             | 22,362       | 9,139          | 13,223       | 59.1        | р      | 15% 1750        | 1,371          | 2,673         | 0             | 0.0          | 0                    | 0                  | 3,152       |
| 0           | DOB                     | NM             | 1,828        | 84             | 1,744        | 95.4        | ER     | 100% Comm       | 84             | 3             | 81            | 96.2         | 4                    | 4                  | 5           |
| 0           | DOB                     | NS             | 47,483       | 32,763         | 14,720       | 31.0        | р      | 15% 1750        | 4,915          | 16,604        | 0             | 0.0          | 0                    | 0                  | 9,790       |
| 0           | DOB                     | SE             | 62,008       | 52,559         | 9,449        | 15.2        | р      | 15% 1750        | 8,769          | 20,098        | 0             | 0.0          | 0                    | 0                  | 8,631       |
| 0           | DOB                     | SR             | 66,280       | 37,537         | 28,743       | 43.4        | р      | 15% 1750        | 5,631          | 13,899        | 0             | 0.0          | 0                    | 0                  | 6,203       |
| 0           | DOB                     | WSW            | 11,659       | 10,764         | 895          | 7.7         | р      | 15% 1750        | 4,174          | 9,564         | 0             | 0.0          | 0                    | 0                  | 770         |
| ov          | DOV                     | BL             | 18,105       | 2,661          | 15,444       | 85.3        | E      | 100% Comm       | 2,661          | 528           | 2,133         | 80.1         | 4                    | 3                  | 405         |
| ov          | DOV                     | FL             | 21,624       | 1,247          | 20,377       | 94.2        | E      | 100% Comm       | 1,247          | 621           | 625           | 50.2         | 4                    | 3                  | 0           |
| ov          | DOV                     | кі             | 5,873        | 1,173          | 4,700        | 80.0        | ER     | 100% Comm       | 1,173          | 426           | 747           | 63.6         | 4                    | 4                  | 0           |
| ov          | DOV                     | NM             | 57,933       | 2,240          | 55,693       | 96.1        | E      | 100% Comm       | 2,240          | 234           | 2,006         | 89.6         | 4                    | 3                  | 10          |
| ov          | DOV                     | NS             | 28,743       | 3,945          | 24,798       | 86.3        | E      | 100% Comm       | 3,945          | 877           | 3,068         | 77.8         | 4                    | 3                  | 249         |
| ov          | DOV                     | SE             | 47,386       | 4,296          | 43,090       | 90.9        | E      | 100% Comm       | 4,296          | 973           | 3,324         | 77.4         | 4                    | 3                  | 46          |
| ov          | DOV                     | SR             | 6,458        | 1,675          | 4,783        | 74.1        | V      | 60% Comm        | 1,005          | 380           | 625           | 62.2         | 3                    | 1                  | 1           |
| ov          | DOV                     | WSW            | 539          | 539            | 0            | 0.0         | ER     | 100% Comm       | 539            | 508           | 31            | 5.7          | 2                    | 4                  | 0           |
| PJ          | DPD                     | BL             | 1,713        | 1,690          | 23           | 1.3         | р      | 15% 1750        | 1,000          | 427           | 573           | 57.3         | 3                    | 0                  | 606         |
| PJ          | DPD                     | СН             | 20,656       | 19,503         | 1,153        | 5.6         | р      | 15% 1750        | 2,926          | 6,461         | 0             | 0.0          | 0                    | 0                  | 960         |
| PJ          | DPD                     | NM             | 1,501        | 701            | 800          | 53.3        | R      | 100% Comm       | 701            | 86            | 615           | 87.8         | 4                    | 0                  | 2           |
| PJ          | DPD                     | NS             | 20           | 20             | 0            | 0.0         | R      | 100% Comm       | 20             | 20            | 0             | 0.0          | 0                    | 0                  | 0           |
| РJ          | DPD                     | SE             | 7,070        | 5,362          | 1,708        | 24.2        | р      | 15% 1750        | 1,000          | 1,216         | 0             | 0.0          | 0                    | 0                  | 27          |
| PJ          | DPD                     | SR             | 15,121       | 15,094         | 27           | 0.2         | р      | 15% 1750        | 2,264          | 7,725         | 0             | 0.0          | 0                    | 0                  | 4,146       |
| PS          | DPO                     | BL             | 3,051        | 1,033          | 2,018        | 66.1        | V      | 60% Comm        | 620            | 218           | 401           | 64.8         | 3                    | 1                  | 269         |
| PS          | DPO                     | СН             | 1,662        | 1,631          | 31           | 1.9         | р      | 15% 1750        | 1,000          | 87            | 913           | 91.3         | 3                    | 0                  | 0           |
| PS          | DPO                     | FL             | 1,922        | 29             | 1,893        | 98.5        | ER     | 100% Comm       | 29             | 16            | 13            | 44.1         | 4                    | 4                  | 0           |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| PS          | DPO                     | NM             | 5,043        | 370            | 4,673        | 92.7        | ER     | 100% Comm       | 370            | 47            | 323           | 87.4         | 4                    | 4                  | 0           |
| PS          | DPO                     | NS             | 331          | 8              | 323          | 97.7        | ER     | 100% Comm       | 8              | 4             | 3             | 42.3         | 4                    | 4                  | 0           |
| PS          | DPO                     | SE             | 11,763       | 5,266          | 6,497        | 55.2        | V      | 60% Comm        | 3,159          | 520           | 2,639         | 83.5         | 3                    | 1                  | 10          |
| PS          | DPO                     | SR             | 1,720        | 612            | 1,108        | 64.4        | VR     | 100% Comm       | 612            | 33            | 579           | 94.5         | 4                    | 2                  | 71          |
| Р           | DPU                     | BL             | 176          | 175            | 1            | 0.6         | R      | 100% Comm       | 175            | 31            | 144           | 82.3         | 4                    | 0                  | 39          |
| Р           | DPU                     | SE             | 173,365      | 130,841        | 42,524       | 24.5        | р      | 15% 1750        | 31,650         | 48,736        | 0             | 0.0          | 0                    | 0                  | 5,901       |
| Р           | DPU                     | SR             | 12,255       | 8,449          | 3,806        | 31.1        | р      | 15% 1750        | 1,267          | 1,603         | 0             | 0.0          | 0                    | 0                  | 980         |
| RI          | DRI                     | SE             | 877          | 795            | 82           | 9.4         | R      | 100% Comm       | 795            | 364           | 431           | 54.2         | 4                    | 0                  | 0           |
| RO          | DRO                     | BL             | 1,968        | 1,714          | 254          | 12.9        | R      | 100% Comm       | 1,714          | 698           | 1,015         | 59.3         | 4                    | 0                  | 503         |
| RO          | DRO                     | СН             | 5,530        | 5,486          | 44           | 0.8         | р      | 15% 1750        | 1,000          | 819           | 181           | 18.1         | 2                    | 0                  | 178         |
| RO          | DRO                     | NM             | 1,483        | 642            | 841          | 56.7        | R      | 100% Comm       | 642            | 242           | 401           | 62.4         | 4                    | 0                  | 0           |
| RO          | DRO                     | NS             | 1,174        | 163            | 1,011        | 86.1        | ER     | 100% Comm       | 163            | 85            | 77            | 47.6         | 4                    | 4                  | 15          |
| RO          | DRO                     | SE             | 3,802        | 3,291          | 511          | 13.4        | р      | 15% 1750        | 1,000          | 404           | 596           | 59.6         | 3                    | 0                  | 219         |
| RO          | DRO                     | SR             | 2,078        | 2,015          | 63           | 3.0         | р      | 15% 1750        | 1,000          | 824           | 176           | 17.6         | 2                    | 0                  | 567         |
| DSC         | DSC                     | BL             | 12,011       | 11,249         | 762          | 6.3         | р      | 15% 1750        | 1,687          | 3,368         | 0             | 0.0          | 0                    | 0                  | 4,811       |
| DSC         | DSC                     | FL             | 3,254        | 1,018          | 2,236        | 68.7        | R      | 100% Comm       | 1,018          | 195           | 823           | 80.9         | 4                    | 0                  | 113         |
| DSC         | DSC                     | NM             | 6,124        | 523            | 5,601        | 91.5        | ER     | 100% Comm       | 523            | 368           | 155           | 29.7         | 3                    | 4                  | 128         |
| DSC         | DSC                     | NS             | 65,534       | 37,023         | 28,511       | 43.5        | р      | 15% 1750        | 5,553          | 14,071        | 0             | 0.0          | 0                    | 0                  | 8,483       |
| DSC         | DSC                     | SE             | 176          | 124            | 52           | 29.5        | R      | 100% Comm       | 124            | 23            | 101           | 81.4         | 4                    | 0                  | 50          |
| SG          | DSG                     | BL             | 19,038       | 18,309         | 729          | 3.8         | р      | 15% 1750        | 2,746          | 12,402        | 0             | 0.0          | 0                    | 0                  | 4,881       |
| SG          | DSG                     | FL             | 8,501        | 7,984          | 517          | 6.1         | р      | 15% 1750        | 1,198          | 3,579         | 0             | 0.0          | 0                    | 0                  | 3,069       |
| SG          | DSG                     | SE             | 520          | 416            | 104          | 20.0        | R      | 100% Comm       | 416            | 329           | 86            | 20.8         | 3                    | 0                  | 0           |
| SG          | DSG                     | WSW            | 8            | 8              | 0            | 0.0         | R      | 100% Comm       | 8              | 0             | 8             | 100.0        | 4                    | 0                  | 0           |
| SO          | DSO                     | BL             | 25,657       | 23,372         | 2,285        | 8.9         | р      | 15% 1750        | 3,506          | 15,994        | 0             | 0.0          | 0                    | 0                  | 5,904       |
| SO          | DSO                     | FL             | 12,573       | 10,716         | 1,857        | 14.8        | р      | 15% 1750        | 1,607          | 5,018         | 0             | 0.0          | 0                    | 0                  | 4,053       |
| SO          | DSO                     | NM             | 267          | 27             | 240          | 90.0        | р      | 15% 1750        | 27             | 0             | 27            | 100.0        | 3                    | 0                  | 0           |
| SO          | DSO                     | SE             | 2,065        | 1,415          | 650          | 31.5        | р      | 15% 1750        | 1,000          | 1,066         | 0             | 0.0          | 0                    | 0                  | 0           |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| TD          | DTD                     | SE             | 10,416       | 10,221         | 195          | 1.9         | р      | 15% 1750        | 3,018          | 6,445         | 0             | 0.0          | 0                    | 0                  | 1,056       |
| TD          | DTD                     | SR             | 709          | 389            | 320          | 45.1        | R      | 100% Comm       | 389            | 132           | 257           | 66.1         | 4                    | 0                  | 0           |
| Т           | DTG                     | SE             | 3,701        | 3,575          | 126          | 3.4         | р      | 15% 1750        | 1,778          | 3,402         | 0             | 0.0          | 0                    | 0                  | 0           |
| TI          | DTO                     | SE             | 104,824      | 47,456         | 57,368       | 54.7        | V      | 60% Comm        | 28,474         | 22,576        | 5,898         | 20.7         | 2                    | 1                  | 1,085       |
| TI          | DTO                     | SR             | 414          | 414            | 0            | 0.0         | R      | 100% Comm       | 414            | 52            | 362           | 87.4         | 4                    | 0                  | 0           |
| TI          | DTO                     | WSW            | 293          | 293            | 0            | 0.0         | R      | 100% Comm       | 293            | 293           | 0             | 0.0          | 0                    | 0                  | 0           |
| G           | DVC                     | FL             | 2,802        | 1,431          | 1,371        | 48.9        | V      | 60% Comm        | 859            | 494           | 365           | 42.4         | 3                    | 1                  | 0           |
| G           | DVC                     | KI             | 483          | 366            | 117          | 24.2        | VR     | 100% Comm       | 366            | 354           | 12            | 3.3          | 2                    | 2                  | 0           |
| G           | DVC                     | NS             | 796          | 33             | 763          | 95.8        | ER     | 100% Comm       | 33             | 5             | 28            | 84.3         | 4                    | 4                  | 0           |
| G           | DVC                     | SE             | 4,011        | 1,041          | 2,970        | 74.1        | VR     | 100% Comm       | 1,041          | 722           | 318           | 30.6         | 4                    | 2                  | 3           |
| G           | DVC                     | SR             | 37           | 3              | 34           | 90.9        | ER     | 100% Comm       | 3              | 3             | 1             | 16.7         | 3                    | 4                  | 0           |
| G           | DVC                     | WSW            | 52           | 52             | 0            | 0.0         | VR     | 100% Comm       | 52             | 37            | 14            | 27.4         | 3                    | 2                  | 13          |
| VF          | DVF                     | FL             | 13,190       | 957            | 12,233       | 92.7        | ER     | 100% Comm       | 957            | 369           | 588           | 61.5         | 4                    | 4                  | 0           |
| V           | DVG                     | BL             | 16,727       | 12,267         | 4,460        | 26.7        | р      | 15% 1750        | 1,840          | 1,887         | 0             | 0.0          | 0                    | 0                  | 314         |
| V           | DVG                     | FL             | 1,643        | 405            | 1,238        | 75.3        | VR     | 100% Comm       | 405            | 89            | 317           | 78.2         | 4                    | 2                  | 0           |
| V           | DVG                     | KI             | 673          | 653            | 20           | 3.0         | R      | 100% Comm       | 653            | 557           | 96            | 14.7         | 3                    | 0                  | 7           |
| V           | DVG                     | NM             | 99,340       | 27,418         | 71,922       | 72.4        | V      | 60% Comm        | 16,451         | 4,285         | 12,166        | 74.0         | 3                    | 1                  | 1           |
| V           | DVG                     | NS             | 2,069        | 1,036          | 1,033        | 49.9        | R      | 100% Comm       | 1,036          | 120           | 916           | 88.4         | 4                    | 0                  | 4           |
| V           | DVG                     | SE             | 127,072      | 67,848         | 59,224       | 46.6        | р      | 15% 1750        | 10,177         | 8,480         | 1,697         | 16.7         | 2                    | 0                  | 1,110       |
| V           | DVG                     | SR             | 2,304        | 241            | 2,063        | 89.6        | VR     | 100% Comm       | 241            | 63            | 178           | 73.8         | 4                    | 2                  | 12          |
| SI          | NAD                     | BL             | 13,038       | 10,360         | 2,678        | 20.5        | р      | 15% 1750        | 1,554          | 4,275         | 0             | 0.0          | 0                    | 0                  | 3,046       |
| SI          | NAD                     | СН             | 3,612        | 3,611          | 1            | 0.0         | р      | 15% 1750        | 1,000          | 2,468         | 0             | 0.0          | 0                    | 0                  | 717         |
| SI          | NAD                     | FL             | 1,887        | 188            | 1,699        | 90.0        | р      | 15% 1750        | 188            | 85            | 103           | 54.9         | 3                    | 0                  | 22          |
| SI          | NAD                     | КІ             | 35           | 28             | 7            | 20.1        | р      | 15% 1750        | 28             | 5             | 23            | 83.1         | 3                    | 0                  | 2           |
| SI          | NAD                     | NM             | 243          | 164            | 79           | 32.6        | р      | 15% 1750        | 164            | 41            | 123           | 75.1         | 3                    | 0                  | 0           |
| SI          | NAD                     | NS             | 21,251       | 19,372         | 1,879        | 8.8         | р      | 15% 1750        | 2,906          | 7,077         | 0             | 0.0          | 0                    | 0                  | 6,630       |
| SI          | NAD                     | SE             | 2,032        | 1,916          | 116          | 5.7         | р      | 15% 1750        | 1,000          | 759           | 241           | 24.1         | 2                    | 0                  | 190         |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| SI          | NAD                     | SR             | 5,081        | 4,692          | 389          | 7.7         | р      | 15% 1750        | 1,000          | 1,201         | 0             | 0.0          | 0                    | 0                  | 1,660       |
| SI          | NAD                     | WSW            | 897          | 882            | 15           | 1.7         | R      | 100% Comm       | 882            | 630           | 252           | 28.6         | 3                    | 0                  | 131         |
| BF          | NAF                     | BL             | 503          | 503            | 0            | 0.0         | R      | 100% Comm       | 503            | 232           | 271           | 53.8         | 4                    | 0                  | 156         |
| BF          | NAF                     | FL             | 790          | 370            | 420          | 53.2        | R      | 100% Comm       | 370            | 318           | 52            | 14.1         | 3                    | 0                  | 0           |
| BF          | NAF                     | кі             | 14,121       | 8,667          | 5,454        | 38.6        | р      | 15% 1750        | 1,300          | 2,844         | 0             | 0.0          | 0                    | 0                  | 4,597       |
| BF          | NAF                     | NM             | 22           | 22             | 0            | 0.0         | R      | 100% Comm       | 22             | 0             | 22            | 100.0        | 4                    | 0                  | 0           |
| BF          | NAF                     | NS             | 2,364        | 79             | 2,285        | 96.6        | ER     | 100% Comm       | 79             | 13            | 66            | 83.3         | 4                    | 4                  | 0           |
| BF          | NAF                     | SE             | 24           | 15             | 9            | 37.5        | R      | 100% Comm       | 15             | 5             | 10            | 66.6         | 4                    | 0                  | 0           |
| BF          | NAF                     | SR             | 16           | 16             | 0            | 0.0         | R      | 100% Comm       | 16             | 13            | 3             | 19.7         | 3                    | 0                  | 0           |
| BF          | NAF                     | WSW            | 1,362        | 1,053          | 309          | 22.7        | р      | 15% 1750        | 1,000          | 551           | 449           | 44.9         | 3                    | 0                  | 445         |
| BR          | NAR                     | BL             | 794          | 324            | 470          | 59.2        | VR     | 100% Comm       | 324            | 171           | 154           | 47.4         | 4                    | 2                  | 79          |
| BR          | NAR                     | СН             | 2,402        | 2,402          | 0            | 0.0         | р      | 15% 1750        | 1,000          | 1,860         | 0             | 0.0          | 0                    | 0                  | 206         |
| BR          | NAR                     | KI             | 6,898        | 4,680          | 2,218        | 32.2        | р      | 15% 1750        | 1,000          | 874           | 126           | 12.6         | 2                    | 0                  | 2,214       |
| BR          | NAR                     | NS             | 7,409        | 5,049          | 2,360        | 31.9        | р      | 15% 1750        | 1,000          | 1,584         | 0             | 0.0          | 0                    | 0                  | 862         |
| BR          | NAR                     | SE             | 2            | 2              | 0            | 0.0         | R      | 100% Comm       | 2              | 0             | 2             | 100.0        | 4                    | 0                  | 2           |
| BR          | NAR                     | SR             | 47           | 47             | 0            | 0.0         | R      | 100% Comm       | 47             | 44            | 3             | 6.6          | 2                    | 0                  | 0           |
| BR          | NAR                     | WSW            | 6,612        | 6,511          | 101          | 1.5         | р      | 15% 1750        | 1,000          | 4,876         | 0             | 0.0          | 0                    | 0                  | 1,259       |
| AV          | NAV                     | BL             | 705          | 705            | 0            | 0.0         | R      | 100% Comm       | 705            | 170           | 534           | 75.8         | 4                    | 0                  | 4           |
| AV          | NAV                     | FL             | 15,729       | 14,145         | 1,584        | 10.1        | р      | 15% 1750        | 2,122          | 4,211         | 0             | 0.0          | 0                    | 0                  | 0           |
| AV          | NAV                     | КІ             | 1            | 1              | 0            | 0.0         | R      | 100% Comm       | 1              | 0             | 1             | 100.0        | 4                    | 0                  | 0           |
| AV          | NAV                     | NM             | 198          | 157            | 41           | 20.7        | R      | 100% Comm       | 157            | 82            | 75            | 47.8         | 4                    | 0                  | 0           |
| AV          | NAV                     | NS             | 3            | 2              | 1            | 36.0        | R      | 100% Comm       | 2              | 0             | 2             | 100.0        | 4                    | 0                  | 0           |
| AV          | NAV                     | SE             | 3,733        | 2,166          | 1,567        | 42.0        | р      | 15% 1750        | 1,000          | 1,253         | 0             | 0.0          | 0                    | 0                  | 0           |
| AV          | NAV                     | SR             | 124          | 92             | 32           | 25.8        | R      | 100% Comm       | 92             | 39            | 53            | 57.6         | 4                    | 0                  | 17          |
| BS          | NBS                     | FL             | 10           | 10             | 0            | 0.0         | ER     | 100% Comm       | 10             | 10            | 0             | 0.0          | 0                    | 4                  | 0           |
| BS          | NBS                     | КІ             | 222          | 158            | 64           | 28.9        | ER     | 100% Comm       | 158            | 128           | 30            | 19.1         | 3                    | 4                  | 0           |
| CR          | NCR                     | FL             | 1,000        | 164            | 836          | 83.6        | VR     | 100% Comm       | 164            | 128           | 36            | 21.9         | 3                    | 2                  | 0           |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| CR          | NCR                     | SE             | 1,214        | 651            | 563          | 46.4        | R      | 100% Comm       | 651            | 417           | 234           | 35.9         | 4                    | 0                  | 0           |
| L           | NLM                     | BL             | 385          | 64             | 321          | 83.5        | VR     | 100% Comm       | 64             | 38            | 26            | 40.3         | 4                    | 2                  | 17          |
| L           | NLM                     | СН             | 115          | 115            | 0            | 0.0         | R      | 100% Comm       | 115            | 84            | 31            | 27.2         | 3                    | 0                  | 2           |
| L           | NLM                     | FL             | 1,174        | 36             | 1,138        | 97.0        | ER     | 100% Comm       | 36             | 25            | 10            | 29.1         | 3                    | 4                  | 0           |
| L           | NLM                     | кі             | 22,493       | 4,701          | 17,792       | 79.1        | V      | 60% Comm        | 2,820          | 1,266         | 1,554         | 55.1         | 3                    | 1                  | 1,290       |
| L           | NLM                     | NS             | 4,631        | 966            | 3,665        | 79.1        | VR     | 100% Comm       | 966            | 281           | 685           | 70.9         | 4                    | 2                  | 196         |
| L           | NLM                     | SE             | 437          | 88             | 349          | 79.9        | VR     | 100% Comm       | 88             | 43            | 45            | 51.0         | 4                    | 2                  | 20          |
| L           | NLM                     | SR             | 773          | 773            | 0            | 0.0         | R      | 100% Comm       | 773            | 599           | 174           | 22.5         | 3                    | 0                  | 168         |
| L           | NLM                     | WSW            | 7,881        | 6,874          | 1,007        | 12.8        | р      | 15% 1750        | 1,212          | 6,373         | 0             | 0.0          | 0                    | 0                  | 572         |
| ME          | NME                     | BL             | 880          | 192            | 688          | 78.2        | ER     | 100% Comm       | 192            | 43            | 149           | 77.6         | 4                    | 4                  | 6           |
| ME          | NME                     | FL             | 8,328        | 3,278          | 5,050        | 60.6        | E      | 100% Comm       | 3,278          | 1,223         | 2,055         | 62.7         | 4                    | 3                  | 1           |
| ME          | NME                     | КI             | 19,096       | 3,942          | 15,154       | 79.4        | E      | 100% Comm       | 3,942          | 1,266         | 2,676         | 67.9         | 4                    | 3                  | 2           |
| ME          | NME                     | NM             | 1,233        | 96             | 1,137        | 92.2        | ER     | 100% Comm       | 96             | 14            | 82            | 85.3         | 4                    | 4                  | 0           |
| ME          | NME                     | NS             | 1,129        | 138            | 991          | 87.8        | ER     | 100% Comm       | 138            | 28            | 109           | 79.6         | 4                    | 4                  | 2           |
| ME          | NME                     | SE             | 81           | 30             | 51           | 62.7        | ER     | 100% Comm       | 30             | 19            | 11            | 36.9         | 4                    | 4                  | 0           |
| ME          | NME                     | WSW            | 193          | 193            | 0            | 0.0         | ER     | 100% Comm       | 193            | 152           | 41            | 21.2         | 3                    | 4                  | 0           |
| NP          | NNP                     | BL             | 597          | 140            | 457          | 76.6        | ER     | 100% Comm       | 140            | 65            | 74            | 53.1         | 4                    | 4                  | 61          |
| NP          | NNP                     | КІ             | 8            | 8              | 0            | 0.0         | ER     | 100% Comm       | 8              | 3             | 4             | 58.4         | 4                    | 4                  | 0           |
| NP          | NNP                     | NS             | 352          | 105            | 247          | 70.2        | ER     | 100% Comm       | 105            | 65            | 40            | 38.3         | 4                    | 4                  | 15          |
| NP          | NNP                     | SE             | 47           | 12             | 35           | 74.6        | ER     | 100% Comm       | 12             | 9             | 3             | 21.0         | 3                    | 4                  | 0           |
| NP          | NNP                     | SR             | 2            | 2              | 0            | 0.0         | ER     | 100% Comm       | 2              | 1             | 1             | 57.6         | 4                    | 4                  | 2           |
| NP          | NNP                     | WSW            | 21           | 21             | 0            | 0.0         | ER     | 100% Comm       | 21             | 17            | 4             | 17.6         | 3                    | 4                  | 0           |
| н           | RHP                     | СН             | 3            | 3              | 0            | 0.0         | R      | 100% Comm       | 3              | 3             | 0             | 0.0          | 0                    | 0                  | 0           |
| Н           | RHP                     | SR             | 119          | 119            | 0            | 0.0         | R      | 100% Comm       | 119            | 118           | 1             | 0.6          | 2                    | 0                  | 18          |
| Н           | RHP                     | WSW            | 13,618       | 13,618         | 0            | 0.0         | р      | 15% 1750        | 4,562          | 11,965        | 0             | 0.0          | 0                    | 0                  | 1,600       |
| F           | RKF                     | СН             | 3,115        | 3,115          | 0            | 0.0         | V      | 60% Comm        | 1,869          | 2,944         | 0             | 0.0          | 0                    | 1                  | 175         |
| F           | RKF                     | SR             | 100          | 100            | 0            | 0.0         | VR     | 100% Comm       | 100            | 100           | 0             | 0.1          | 2                    | 2                  | 0           |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| х           | RKP                     | СН             | 15,739       | 15,739         | 0            | 0.0         | V      | 60% Comm        | 9,443          | 14,112        | 0             | 0.0          | 0                    | 1                  | 572         |
| Х           | RKP                     | SR             | 9,743        | 9,743          | 0            | 0.0         | V      | 60% Comm        | 5,846          | 9,743         | 0             | 0.0          | 0                    | 1                  | 0           |
| Х           | RKP                     | WSW            | 10,709       | 10,709         | 0            | 0.0         | V      | 60% Comm        | 6,425          | 9,501         | 0             | 0.0          | 0                    | 1                  | 838         |
| M-          | RMS                     | BL             | 5,431        | 5,416          | 15           | 0.3         | р      | 15% 1750        | 1,000          | 4,552         | 0             | 0.0          | 0                    | 0                  | 630         |
| M-          | RMS                     | СН             | 19,078       | 16,061         | 3,017        | 15.8        | р      | 15% 1750        | 5,255          | 13,163        | 0             | 0.0          | 0                    | 0                  | 1,807       |
| M-          | RMS                     | FL             | 5            | 5              | 0            | 0.0         | R      | 100% Comm       | 5              | 5             | 0             | 0.0          | 0                    | 0                  | 0           |
| M-          | RMS                     | КІ             | 12,685       | 12,535         | 150          | 1.2         | р      | 15% 1750        | 3,609          | 3,821         | 0             | 0.0          | 0                    | 0                  | 9,410       |
| M-          | RMS                     | NS             | 26,297       | 20,321         | 5,976        | 22.7        | р      | 15% 1750        | 7,570          | 14,281        | 0             | 0.0          | 0                    | 0                  | 6,484       |
| M-          | RMS                     | SE             | 3            | 3              | 0            | 0.0         | R      | 100% Comm       | 3              | 1             | 3             | 73.4         | 4                    | 0                  | 1           |
| M-          | RMS                     | SR             | 20,351       | 19,978         | 373          | 1.8         | р      | 15% 1750        | 7,952          | 18,542        | 0             | 0.0          | 0                    | 0                  | 2,233       |
| M-          | RMS                     | WSW            | 142,057      | 130,620        | 11,437       | 8.1         | р      | 15% 1750        | 56,418         | 117,641       | 0             | 0.0          | 0                    | 0                  | 12,976      |
| M+          | RMT                     | BL             | 35,190       | 28,792         | 6,398        | 18.2        | р      | 15% 1750        | 8,345          | 21,547        | 0             | 0.0          | 0                    | 0                  | 6,954       |
| M+          | RMT                     | СН             | 56,799       | 53,026         | 3,773        | 6.6         | р      | 15% 1750        | 22,645         | 47,748        | 0             | 0.0          | 0                    | 0                  | 4,516       |
| M+          | RMT                     | КІ             | 8,901        | 8,832          | 69           | 0.8         | р      | 15% 1750        | 4,010          | 5,404         | 0             | 0.0          | 0                    | 0                  | 3,806       |
| M+          | RMT                     | NS             | 49,163       | 32,088         | 17,075       | 34.7        | р      | 15% 1750        | 10,963         | 23,827        | 0             | 0.0          | 0                    | 0                  | 7,693       |
| M+          | RMT                     | SE             | 693          | 618            | 75           | 10.8        | R      | 100% Comm       | 618            | 575           | 43            | 7.0          | 2                    | 0                  | 26          |
| M+          | RMT                     | SR             | 46,122       | 45,884         | 238          | 0.5         | р      | 15% 1750        | 22,107         | 45,159        | 0             | 0.0          | 0                    | 0                  | 1,197       |
| M+          | RMT                     | WSW            | 267,394      | 266,762        | 632          | 0.2         | р      | 15% 1750        | 122,083        | 255,561       | 0             | 0.0          | 0                    | 0                  | 11,546      |
| PD          | RPF                     | СН             | 4,403        | 4,403          | 0            | 0.0         | V      | 60% Comm        | 2,642          | 4,403         | 0             | 0.0          | 0                    | 1                  | 0           |
| PD          | RPF                     | SR             | 34           | 34             | 0            | 0.0         | VR     | 100% Comm       | 34             | 34            | 0             | 0.0          | 0                    | 0                  | 0           |
| РР          | RPP                     | СН             | 19,219       | 19,219         | 0            | 0.0         | V      | 60% Comm        | 11,531         | 19,217        | 0             | 0.0          | 0                    | 1                  | 0           |
| РР          | RPP                     | SR             | 619          | 619            | 0            | 0.0         | VR     | 100% Comm       | 619            | 619           | 0             | 0.0          | 0                    | 2                  | 9           |
| BA          | WBR                     | BL             | 289          | 95             | 194          | 67.2        | VR     | 100% Comm       | 95             | 42            | 53            | 56.0         | 4                    | 2                  | 20          |
| BA          | WBR                     | КІ             | 12,679       | 5,866          | 6,813        | 53.7        | V      | 60% Comm        | 3,520          | 1,806         | 1,714         | 48.7         | 3                    | 1                  | 1,224       |
| BA          | WBR                     | NS             | 37           | 36             | 1            | 2.7         | R      | 100% Comm       | 36             | 20            | 16            | 45.0         | 4                    | 0                  | 10          |
| BA          | WBR                     | SE             | 160          | 102            | 58           | 36.3        | R      | 100% Comm       | 102            | 41            | 61            | 60.1         | 4                    | 0                  | 0           |
| BA          | WBR                     | WSW            | 293          | 293            | 0            | 0.0         | VR     | 100% Comm       | 293            | 259           | 34            | 11.5         | 3                    | 2                  | 34          |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| DT          | WDU                     | BL             | 43,026       | 39,288         | 3,738        | 8.7         | р      | 15% 1750        | 5,893          | 19,646        | 0             | 0.0          | 0                    | 0                  | 18,368      |
| DT          | WDU                     | СН             | 92,748       | 82,729         | 10,019       | 10.8        | р      | 15% 1750        | 18,095         | 51,188        | 0             | 0.0          | 0                    | 0                  | 17,367      |
| DT          | WDU                     | NS             | 30,758       | 20,976         | 9,782        | 31.8        | р      | 15% 1750        | 3,146          | 10,545        | 0             | 0.0          | 0                    | 0                  | 8,557       |
| DT          | WDU                     | SE             | 21,310       | 19,874         | 1,436        | 6.7         | р      | 15% 1750        | 5,218          | 10,320        | 0             | 0.0          | 0                    | 0                  | 8,305       |
| DT          | WDU                     | SR             | 102,245      | 94,152         | 8,093        | 7.9         | р      | 15% 1750        | 24,707         | 63,041        | 0             | 0.0          | 0                    | 0                  | 32,308      |
| DT          | WDU                     | WSW            | 19,302       | 17,730         | 1,572        | 8.1         | р      | 15% 1750        | 7,591          | 16,637        | 0             | 0.0          | 0                    | 0                  | 716         |
| KG          | WGK                     | кі             | 32,435       | 1,618          | 30,817       | 95.0        | ER     | 100% Comm       | 1,618          | 1,017         | 600           | 37.1         | 4                    | 4                  | 272         |
| NT          | WNU                     | СН             | 20,523       | 20,472         | 51           | 0.2         | р      | 15% 1750        | 4,292          | 19,116        | 0             | 0.0          | 0                    | 0                  | 954         |
| NT          | WNU                     | кі             | 4,656        | 4,493          | 163          | 3.5         | р      | 15% 1750        | 1,000          | 1,735         | 0             | 0.0          | 0                    | 0                  | 1,240       |
| NT          | WNU                     | SR             | 25,819       | 25,809         | 10           | 0.0         | р      | 15% 1750        | 6,758          | 25,206        | 0             | 0.0          | 0                    | 0                  | 599         |
| NT          | WNU                     | WSW            | 199,483      | 189,948        | 9,535        | 4.8         | р      | 15% 1750        | 45,410         | 184,092       | 0             | 0.0          | 0                    | 0                  | 3,938       |
| ОТ          | WOU                     | BL             | 55,590       | 35,635         | 19,955       | 35.9        | р      | 15% 1750        | 5,345          | 16,742        | 0             | 0.0          | 0                    | 0                  | 13,559      |
| ОТ          | wou                     | FL             | 2,493        | 2,250          | 243          | 9.7         | р      | 15% 1750        | 1,000          | 1,185         | 0             | 0.0          | 0                    | 0                  | 682         |
| ОТ          | WOU                     | кі             | 73,507       | 61,541         | 11,966       | 16.3        | р      | 15% 1750        | 9,231          | 14,306        | 0             | 0.0          | 0                    | 0                  | 42,961      |
| ОТ          | wou                     | NS             | 177,718      | 112,280        | 65,438       | 36.8        | р      | 15% 1750        | 16,842         | 34,474        | 0             | 0.0          | 0                    | 0                  | 32,175      |
| ОТ          | WOU                     | SE             | 34,794       | 30,263         | 4,531        | 13.0        | р      | 15% 1750        | 4,878          | 15,899        | 0             | 0.0          | 0                    | 0                  | 8,154       |
| ОТ          | WOU                     | SR             | 171,528      | 139,551        | 31,977       | 18.6        | р      | 15% 1750        | 20,933         | 74,042        | 0             | 0.0          | 0                    | 0                  | 52,331      |
| ОТ          | WOU                     | WSW            | 54,778       | 53,295         | 1,483        | 2.7         | р      | 15% 1750        | 16,518         | 45,310        | 0             | 0.0          | 0                    | 0                  | 8,889       |
| R           | WRE                     | BL             | 45,699       | 30,483         | 15,216       | 33.3        | р      | 15% 1750        | 4,572          | 15,384        | 0             | 0.0          | 0                    | 0                  | 13,388      |
| R           | WRE                     | кі             | 23           | 23             | 0            | 0.0         | R      | 100% Comm       | 23             | 0             | 23            | 100.0        | 4                    | 0                  | 0           |
| R           | WRE                     | NS             | 9,113        | 2,395          | 6,718        | 73.7        | V      | 60% Comm        | 1,437          | 1,225         | 212           | 14.8         | 2                    | 1                  | 644         |
| R           | WRE                     | SE             | 5,975        | 5,436          | 539          | 9.0         | р      | 15% 1750        | 1,000          | 1,921         | 0             | 0.0          | 0                    | 0                  | 1,273       |
| R           | WRE                     | SR             | 47,182       | 42,111         | 5,071        | 10.7        | р      | 15% 1750        | 6,317          | 15,736        | 0             | 0.0          | 0                    | 0                  | 24,849      |
| SU          | WSU                     | BL             | 4            | 4              | 0            | 0.0         | VR     | 100% Comm       | 4              | 1             | 3             | 72.5         | 4                    | 2                  | 2           |
| SU          | WSU                     | СН             | 17,317       | 17,317         | 0            | 0.0         | р      | 15% 1750        | 4,410          | 17,169        | 0             | 0.0          | 0                    | 0                  | 34          |
| SU          | WSU                     | SR             | 10,183       | 9,859          | 324          | 3.2         | р      | 15% 1750        | 2,888          | 9,717         | 0             | 0.0          | 0                    | 0                  | 318         |
| SU          | WSU                     | WSW            | 835          | 835            | 0            | 0.0         | R      | 100% Comm       | 835            | 835           | 0             | 0.0          | 0                    | 0                  | 0           |

| RFA<br>code | Tasveg-<br>RFA<br>equiv | IBRA<br>region | 1750<br>(ha) | Extant<br>(ha) | Loss<br>(ha) | Loss<br>(%) | Status | Target<br>desc. | Target<br>(ha) | Resv.<br>(ha) | Short<br>(ha) | Short<br>(%) | Reservation<br>index | Depletion<br>index | FMU<br>(ha) |
|-------------|-------------------------|----------------|--------------|----------------|--------------|-------------|--------|-----------------|----------------|---------------|---------------|--------------|----------------------|--------------------|-------------|
| VW          | WVI                     | BL             | 11,964       | 1,659          | 10,305       | 86.1        | E      | 100% Comm       | 1,659          | 445           | 1,214         | 73.2         | 4                    | 3                  | 356         |
| VW          | WVI                     | FL             | 5,591        | 2              | 5,589        | 100.0       | ER     | 100% Comm       | 2              | 0             | 2             | 100.0        | 4                    | 4                  | 0           |
| VW          | WVI                     | KI             | 377          | 47             | 330          | 87.5        | ER     | 100% Comm       | 47             | 10            | 37            | 78.8         | 4                    | 4                  | 0           |
| VW          | WVI                     | NM             | 2,297        | 182            | 2,115        | 92.1        | ER     | 100% Comm       | 182            | 104           | 78            | 42.8         | 4                    | 4                  | 0           |
| VW          | WVI                     | NS             | 55,475       | 5,328          | 50,147       | 90.4        | E      | 100% Comm       | 5,328          | 1,670         | 3,658         | 68.7         | 4                    | 3                  | 1,018       |
| VW          | WVI                     | SE             | 701          | 177            | 524          | 74.7        | ER     | 100% Comm       | 177            | 127           | 50            | 28.5         | 3                    | 4                  | 1           |
| VW          | WVI                     | SR             | 433          | 228            | 205          | 47.3        | ER     | 100% Comm       | 228            | 21            | 207           | 90.6         | 4                    | 4                  | 0           |
| VW          | WVI                     | WSW            | 11           | 11             | 0            | 0.0         | ER     | 100% Comm       | 11             | 0             | 11            | 95.9         | 4                    | 4                  | 0           |

Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit: Attachment 6 – Species habitat modelling rules and HCV indicator attributes

**R.I. Knight** 

March 2014

**Report to Forestry Tasmania** 

natural resource planning

#### Suggested citation:

Knight, R.I. (2014). Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit assessment of Forest Stewardship Council certification: Attachment 6 – species habitat modelling rules and HCV indicator attributes. A report to Forestry Tasmania, March 2014. Natural Resource Planning, Hobart, Tasmania.

Produced by: Natural Resource Planning Pty Ltd ACN: 130 109 250 PO Box 4530 Bathurst Street Hobart, TASMANIA, 7000. Australia. www.naturalresourceplanning.com.au

© Natural Resource Planning Pty Ltd

This work is protected under Australian copyright law. The report may be freely circulated, cited or reproduced only in accordance with the provisions of applicable copyright law.

Commercial use of the contents and format of this report and the intellectual property herein is prohibited except as provided for by the service contract between Natural Resource Planning and Forestry Tasmania. Potential users should contact the company for further information.

*Disclaimer:* Whilst due and reasonable care has been taken in the preparation of this report and the data described herein, NRP does not warrant that it is free of errors or omissions and does not accept responsibility for any cost or inconvenience arising from its use. Use and interpretation of the data is a matter for Forestry Tasmania.



# ATTACHMENT 6. SPECIES HABITAT MODELLING RULES AND HCV INDICATOR ATTRIBUTES

### KEY

- *Species* Species scientific name as recorded in the NVA. Suffixes in brackets are additional descriptors for the modelling process.
- *Code* Code for the species used in the REM.
- *EPBC* EPBC Act threat status, from NVA. CR = Critically Endangered, E = Endangered, V = Vulnerable. Prefix of P denotes status when corrected for taxonomic differences between Acts.
- TPSA TSP Act threat status, from NVA. e = Endangered, r = Rare, v = Vulnerable. Prefix of p denotes status when corrected for taxonomic differences between Acts.
- Model type Modelling process used for the species. P = Point, using NVA records only, S = Special, using species-specific model, B = Bioregional, poorly reserved flora species using NVA records only. Special models are more detailed habitat-based models developed for each species and described in Attachment 7.

#### NVA modelling rules

- *Bioregions* Bioregions in which the species is potentially poorly reserved. BL = Ben Lomond, CH = Central Highlands, FL = Flinders, KI = King, NM = Northern Midlands, NS = Northern Slopes, SE = South East, SR = Southern Ranges, WSW = West.
- Accuracy Minimum accuracy for an NVA records to be used in a Point or Bioregional model.
- *Distance* Maximum distance from an NVA records in which habitat can be attributed in a Point or Bioregional model.
- Year The earliest year for an NVA record to be used in a Point or Bioregional model.
- Riparian Y = Yes. Restricts habitat of Point or Bioregional models to riparian zones (except where record not in or adjoining a riparian zone).
- Water Y = Yes. Relaxes a Point or Bioregional model to permit habitat to be attributed in water.

Native - Y = Yes. Restricts habitat of Point or Bioregional models to native vegetation.

Plantation - Y = Yes. Relaxes a Point or Bioregional model to permit habitat to be attributed in water.

#### HCV indicator attributes

- *Land systems* The number of land systems on which NVA records of the species (accuracy <500m) are located.
- *Land sys. reserved –* The proportion of land systems on which NVA records of the species are located in reserves.

Land comps. - The number of land system components on which NVA records of the species are located.

*Land comps. – reserved* – The proportion of land system components on which NVA records are located in reserves.

Note: Negative values in any of the above fields indicate insufficient reliable data for analysis.

*Reserve status* – Reservation status of threatened flora and fauna species. P = Poorly reserved.

- *Fauna type* Fauna type attribute of the species or species life cycle attribute. CLL = Critically Limited Location, LDF = Landscape Dependent Fauna, DN = Den or nest sites.
- *Endemic* Indicates a species is endemic in Tasmania. Includes species which are endemic in Tasmania as a result of extirpation on mainland Australia since European settlement.

| Species                                             | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Fauna                                               |        |      |      |               |            |          |          |      |          |       |        |             |                 |                      |                |                        |                   |               |         |
| Acanthiza pusilla subsp.<br>archibaldi              | ківт;  | EN   | е    | S             |            | 0        | 0        | 0    |          |       | Y      |             | 1               | 0.00                 | 2              | 0.00                   | Р                 | CLL;          | Y       |
| Acanthornis magna subsp.<br>greeniana               | KIST;  | CR   | е    | S             |            | 0        | 0        | 0    |          |       | Y      |             | 4               | 0.75                 | 6              | 0.67                   |                   | CLL;          |         |
| Acanthornis magnus<br>subsp. greeniana              | KIST;  | CR   | е    | S             |            | 0        | 0        | 0    |          |       | Y      |             | 4               | 0.75                 | 6              | 0.67                   |                   | CLL;          | Y       |
| Accipiter novaehollandiae<br>(foraging habitat)     | GG_f;  |      | е    | S             |            | 0        | 0        | 0    |          |       |        |             | 31              | 0.45                 | 39             | 0.44                   |                   | LDF;          |         |
| Accipiter novaehollandiae<br>(nests)                | GG_n;  |      | е    | Р             |            | 200      | 500      | 0    |          |       |        | Y           | 31              | 0.45                 | 39             | 0.44                   |                   | LDF;DN;       |         |
| Alcedo azurea subsp.<br>diemenensis                 | AzK;   | EN   | е    | P, S          |            | 1000     | 1000     | 0    | Y        |       | Y      |             | 36              | 0.67                 | 57             | 0.68                   |                   | LDF;          |         |
| Allanaspides hickmani                               | AlHi;  |      | r    | Р             |            | 200      | 200      | 0    |          |       |        |             | 3               | 1.00                 | 10             | 1.00                   |                   |               | Y       |
| Amelora acontistica                                 | CLM;   |      | v    | P,S           |            | 200      | 500      | 0    |          |       | Y      |             | 2               | 0.00                 | 4              | 0.00                   | Р                 | CLL;          | Y       |
| Antipodia chaostola                                 | CSk;   | EN   | е    | P,S           |            | 200      | 1000     | 0    |          |       | Y      |             | 7               | 0.43                 | 13             | 0.54                   |                   |               |         |
| Antipodia chaostola<br>subsp. leucophaea            | CSk;   | EN   | е    | P,S           |            | 200      | 500      | 0    |          |       | Y      |             | 7               | 0.43                 | 13             | 0.54                   |                   |               |         |
| Aquila audax (nests)                                | WtEn;  | PEN  | ре   | Р             |            | 200      | 500      | 0    |          |       |        | Y           | 184             | 0.68                 | 365            | 0.67                   |                   | LDF;DN;       |         |
| <i>Aquila audax</i> subsp. <i>fleayi</i><br>(nests) | WtEn;  | EN   | е    | Р             |            | 200      | 500      | 0    |          |       |        | Y           | 184             | 0.68                 | 365            | 0.67                   |                   | LDF;DN;       |         |
| Astacopsis gouldi<br>(confirmed locations)          | GFC_c; | VU   | v    | Р             |            | 200      | 1000     | 0    | Y        |       |        |             | 57              | 0.49                 | 143            | 0.43                   |                   | LDF;          | Y       |
| Astacopsis gouldi (habitat)                         | GFC_h; | VU   | v    | S             |            | 0        | 0        | 0    |          |       |        |             | 57              | 0.49                 | 143            | 0.43                   |                   | LDF;          | Y       |
| Beddomeia angulata                                  | BdAn;  |      | r    | P, S          |            | 200      | 200      | 0    | Y        |       | Y      |             | 1               | 1.00                 | 1              | 1.00                   | Р                 | CLL;          | Y       |
| Beddomeia averni                                    | BdAv;  |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 2              | 0.00                   | Р                 | CLL;          | Y       |

| Species                      | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Beddomeia bellii             | BdBe;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 2               | 1.00                 | 5              | 1.00                   |                   | CLL;          | Y       |
| Beddomeia bowryensis         | BdBo;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 4               | 1.00                 | 5              | 1.00                   |                   | CLL;          | Y       |
| Beddomeia briansmithi        | BdBr;  |      | v    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 5               | 0.40                 | 8              | 0.38                   | Р                 |               | Y       |
| Beddomeia camensis           | BdCam; |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 2               | 0.50                 | 4              | 0.25                   | Р                 | CLL;          | Y       |
| Beddomeia capensis           | BdCap; |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 2               | 0.50                 | 4              | 0.25                   | Р                 | CLL;          | Y       |
| Beddomeia fallax             | BdFa;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 | CLL;          | Y       |
| Beddomeia forthensis         | BdFor; |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 2               | 0.00                 | 2              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia franklandensis     | BdFra; |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Beddomeia fromensis          | BdFro; |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 2               | 0.50                 | 5              | 0.40                   | Р                 | CLL;          | Y       |
| Beddomeia fultoni            | BdFu;  |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 3               | 0.33                 | 5              | 0.40                   | Р                 | CLL;          | Y       |
| Beddomeia gibba              | BdGi;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 3               | 0.00                 | 5              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia hallae             | BdHa;  |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia hermansi           | BdHe;  |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia hullii             | BdHu;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 3               | 1.00                 | 5              | 1.00                   |                   | CLL;          | Y       |
| Beddomeia inflata            | BdIn;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Beddomeia kershawi           | BdKer; |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia krybetes           | BdKr;  | 0    | v    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 | CLL;          | Y       |
| Beddomeia<br>Iauncestonensis | BdLa;  | -    | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia lodderae           | BdLo;  |      | v    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia mesibovi           | BdMe;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 4               | 0.25                 | 9              | 0.44                   | Р                 |               | Y       |
| Beddomeia minima             | BdMi;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 4               | 0.00                 | 9              | 0.11                   | Р                 |               | Y       |
| Beddomeia petterdi           | BdPe;  |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Beddomeia phasianella        | BdPh;  |      | v    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 3              | 0.00                   | Р                 | CLL;          | Y       |

| Species                            | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Beddomeia protuberata              | BdPr;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 | CLL;          | Y       |
| Beddomeia ronaldi                  | BdRo;  |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 4               | 0.00                 | 5              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia salmonis                 | BdSa;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 3               | 0.00                 | 4              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia tasmanica                | BdTa;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 4               | 1.00                 | 9              | 1.00                   |                   |               | Y       |
| Beddomeia topsiae                  | BdTo;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 6               | 0.17                 | 9              | 0.22                   | Р                 |               | Y       |
| Beddomeia trochiformis             | BdTr;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 3               | 1.00                 | 6              | 1.00                   |                   | CLL;          | Y       |
| Beddomeia tumida                   | BdTum; |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 0               | -1.00                | 0              | -1.00                  | Р                 | CLL;          | Y       |
| Beddomeia turnerae                 | BdTur; |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 6               | 0.50                 | 10             | 0.30                   |                   |               | Y       |
| Beddomeia waterhouseae             | BdWa;  |      | е    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 1               | 0.00                 | 2              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia wilmotensis              | BdWil; |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 2               | 0.50                 | 3              | 0.67                   | Р                 | CLL;          | Y       |
| Beddomeia wiseae                   | BdWis; |      | v    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 3               | 0.00                 | 3              | 0.00                   | Р                 | CLL;          | Y       |
| Beddomeia zeehanensis              | BdZe;  |      | r    | P, S          |            | 200      | 500      | 0    | Y        |       |        |             | 3               | 0.67                 | 3              | 0.67                   |                   | CLL;          | Y       |
| Benthodorbis pawpela               | GlPa;  |      | r    | Р             |            | 200      | 500      | 0    | Y        | Y     |        |             | 0               | -1.00                | 0              | -1.00                  | Р                 | CLL;          | Y       |
| Bettongia gaimardi                 | тв;    |      |      | Р             | D          | 500      | 2000     | 0    |          |       | Y      |             | 65              | 0.28                 | 110            | 0.25                   |                   | LDF;          | Y       |
| Botaurus poiciloptilus             | BoPo;  | EN   |      | S             |            | 200      | 500      | 0    |          |       | Y      |             | 18              | 0.22                 | 19             | 0.21                   | Р                 |               | )       |
| Castiarina insculpta               | MJB;   |      | е    | P,S           |            | 200      | 200      | 0    |          |       |        |             | 4               | 0.50                 | 8              | 0.50                   | Р                 |               | Y       |
| Catadromus lacordairei             | GLGB;  |      | v    | P,S           |            | 200      | 200      | 0    |          |       |        |             | 10              | 0.20                 | 11             | 0.18                   |                   |               |         |
| Cavernotettix craggiensis          | CICC;  |      | r    | Р             |            | 200      | 200      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 | CLL;          | Y       |
| Ceyx azureus subsp.<br>diemenensis | AzK;   | EN   | е    | Р             |            | 1000     | 1000     | 0    | Y        |       | Y      |             | 36              | 0.67                 | 57             | 0.68                   |                   | LDF;          |         |
| Charopidae sp Skemps               | ChSk;  |      | r    | P,S           |            | 200      | 500      | 0    | Y        |       |        |             | 6               | 0.33                 | 12             | 0.42                   |                   |               | Y       |
| Chloritobadistes victoriae         | SHRS;  |      | v    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 4               | 0.75                 | 13             | 0.69                   |                   |               |         |
| Chrysolarentia decisaria           | TLM;   |      | е    | S             |            | 200      | 500      | 0    |          |       | Y      |             | 2               | 0.50                 | 2              | 0.50                   | Р                 | CLL;          |         |
| Dasybela achroa                    | SLM;   |      | v    | Р             |            | 200      | 500      | 0    |          |       | Y      |             | 2               | 0.00                 | 3              | 0.00                   | Р                 | CLL;          | Y       |

| Species                                                                        | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------------------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Dasyurus maculatus                                                             |        | VY   | r    | S             |            | 200      | 500      | 0    |          |       |        |             | 212             | 0.38                 | 450            | 0.38                   |                   | LDF;DN;       |         |
| Subsp. maculatus (dens)<br>Dasyurus maculatus<br>subsp. maculatus<br>(habitat) | STQ_h; | VU   | r    | Р             |            | 200      | 2500     | 0    |          |       | Y      |             | 212             | 0.38                 | 450            | 0.38                   |                   | LDF;          |         |
| Dasyurus viverrinus                                                            | EQol;  |      |      | Р             |            | 500      | 2500     | 0    |          |       | Y      |             | 175             | 0.28                 | 340            | 0.29                   |                   | LDF;          | Y       |
| Discocharopa vigens                                                            | DiVi;  | CR   | е    | Р             |            | 200      | 200      | 0    |          |       |        |             | 2               | 0.00                 | 2              | 0.00                   | Р                 | CLL;          | Y       |
| Echinodillo cavaticus                                                          | EcCa;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Ecnomina vega                                                                  | EcVe;  |      | r    | Р             |            | 200      | 500      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Enchymus sp. nov                                                               | WFW;   |      | r    | P,S           |            | 200      | 200      | 0    |          |       | Y      | a           | 1               | 1.00                 | 1              | 1.00                   |                   | CLL;          |         |
| Engaeus granulatus                                                             | EG;    | EN   | е    | P,S           |            | 200      | 500      | 0    | Y        |       |        |             | 12              | 0.33                 | 31             | 0.23                   | Р                 |               | Y       |
| Engaeus martigener                                                             | FBC;   | EN   | v    | P,S           |            | 200      | 200      | 0    |          |       |        |             | 2               | 1.00                 | 3              | 1.00                   |                   | CLL;          | Y       |
| Engaeus orramakunna                                                            | EO;    | VU   | v    | P,S           |            | 200      | 200      | 0    | Y        |       |        |             | 15              | 0.13                 | 37             | 0.30                   | Р                 |               | Y       |
| Engaeus spinicaudatus                                                          | SBC;   | EN   | е    | P,S           |            | 200      | 200      | 0    | Y        |       |        |             | 4               | 0.25                 | 13             | 0.69                   | Р                 |               | Y       |
| Engaeus yabbimunna                                                             | BBC;   | VU   | v    | P,S           |            | 200      | 200      | 0    | Y        |       |        |             | 4               | 0.00                 | 13             | 0.08                   | Р                 |               | Y       |
| Galaxias auratus                                                               | GGx;   | EN   | r    | S             |            | 200      | 500      | 0    | Y        | Y     |        | ,           | 6               | 0.00                 | 10             | 0.00                   |                   |               | Y       |
| Galaxias fontanus                                                              | SwnG;  | EN   | е    | S             |            | 200      | 500      | 0    | Y        |       |        | ,           | 11              | 0.09                 | 25             | 0.32                   |                   | LDF;          | Y       |
| Galaxias johnstoni                                                             | ClG;   | EN   | е    | S             |            | 200      | 500      | 0    | Y        | Y     |        |             | 6               | 0.67                 | 18             | 0.72                   |                   | LDF;          | Y       |
| Galaxias parvus                                                                | SwpG;  | VU   | v    | S             |            | 200      | 500      | 0    | Y        | Y     |        | ,           | 4               | 1.00                 | 10             | 0.90                   |                   |               | Y       |
| Galaxias pedderensis                                                           | GaPe;  | EX   | е    | S             |            | 200      | 200      | 1980 | Y        | Y     |        | ,           | 3               | 1.00                 | 7              | 1.00                   |                   |               | Y       |
| Galaxias tanycephalus                                                          | SaG;   | VU   | v    | S             |            | 200      | 500      | 0    | Y        | Y     |        |             | 5               | 0.20                 | 9              | 0.11                   |                   |               | Y       |
| Galaxiella pusilla                                                             | DwG;   | VU   | v    | S             |            | 200      | 500      | 0    | Y        | Y     |        |             | 12              | 0.50                 | 18             | 0.50                   |                   |               |         |
| Glacidorbis pawpela                                                            | GlPa;  |      | pr   | Р             |            | 200      | 500      | 0    | Y        | Y     |        |             | 0               | -1.00                | 0              | -1.00                  | Р                 | CLL;          | Y       |
| Goedetrechus mendumae                                                          | GoMe;  |      | v    | Р             |            | 200      | 500      | 0    |          |       | Y      |             | 1               | 1.00                 | 3              | 1.00                   | Р                 | CLL;          | Y       |
| Goedetrechus parallelus                                                        | GoPa;  |      | v    | Р             |            | 200      | 500      | 0    |          |       | Y      |             | 5               | 1.00                 | 8              | 1.00                   |                   |               | Y       |

| Species                                   | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Haliaeetus leucogaster                    | WBSE;  |      | v    | Р             |            | 200      | 200      | 0    |          |       |        | Y           | 74              | 0.55                 | 111            | 0.52                   |                   | LDF;DN;       |         |
| Haloniscus searlei                        | SLS;   |      | е    | P,S           |            | 200      | 200      | 0    |          | Y     | Y      |             | 2               | 0.50                 | 2              | 0.50                   | Р                 | CLL;          |         |
| Helicarion rubicundus                     | HR;    |      | r    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 5               | 0.40                 | 16             | 0.38                   | Р                 |               | Y       |
| Hickmanoxyomma<br>cavaticum               | HiCar; |      | r    | S             |            | 200      | 200      | 0    |          |       | Y      |             | 4               | 0.75                 | 5              | 0.80                   |                   | CLL;          | Y       |
| Hickmanoxyomma<br>gibbergunyar            | HiGi;  |      | r    | S             |            | 200      | 200      | 0    |          |       | Y      |             | 5               | 0.80                 | 12             | 0.92                   |                   |               | Y       |
| Hoplogonus bornemisszai                   | HBmz;  | CR   | е    | S             |            | 200      | 200      | 0    |          |       | Y      |             | 2               | 0.50                 | 6              | 0.67                   | Р                 | CLL;          | Y       |
| Hoplogonus simsoni                        | HS;    | VU   | v    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 6               | 0.67                 | 15             | 0.60                   |                   |               | Y       |
| Hoplogonus<br>vanderschoori               | HV;    | VU   | v    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 5               | 0.40                 | 10             | 0.30                   | Р                 |               | Y       |
| Hydrobiosella sagitta                     | HySa;  |      | r    | S             |            | 200      | 200      | 0    | Y        |       | Y      |             | 1               | 1.00                 | 1              | 1.00                   | Р                 | CLL;          | Y       |
| Hydroptila scamandra                      | HySc;  |      | r    | Р             |            | 200      | 200      | 0    | Y        |       | Y      |             | 2               | 0.00                 | 2              | 0.00                   | Р                 | CLL;          |         |
| Idacarabus cordicollis                    | IdCo;  |      | r    | Р             |            | 200      | 100      | 0    |          |       | Y      |             | 3               | 1.00                 | 4              | 1.00                   |                   | CLL;          | Y       |
| Idacarabus troglodytes                    | ldTr;  |      | r    | S             |            | 200      | 100      | 0    |          |       | Y      |             | 3               | 0.67                 | 5              | 0.80                   |                   | CLL;          | Y       |
| Lathamus discolor                         | SP_n;  | EN   | е    | S             |            | 200      | 300      | 0    |          |       |        |             | 40              | 0.55                 | 104            | 0.51                   |                   | LDF;DN;       |         |
| Lathamus discolor<br>(breeding)           | SP_f;  | EN   | е    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | 1.00                 | -1             | 1.00                   |                   | LDF;          |         |
| Lathamus discolor<br>(foraging)           | SP_b;  | EN   | е    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | 1.00                 | -1             | 1.00                   |                   | LDF;          |         |
| Limnodynastes peroni                      | SMF;   |      | е    | S             |            | 200      | 200      | 0    |          |       |        |             | 17              | 0.41                 | 28             | 0.39                   |                   |               |         |
| Lissotes latidens                         | BTSB;  | EN   | е    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 5               | 0.80                 | 15             | 0.53                   |                   |               | Y       |
| Lissotes menalcas<br>(recorded locations) | LM_l;  |      | v    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 24              | 0.25                 | 49             | 0.22                   |                   |               | Y       |
| <i>Lissotes menalcas</i><br>(habitat)     | LM_h;  |      | v    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | 1.00                 | -1             | 1.00                   |                   |               | Y       |

| Species                                     | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Litoria raniformis                          | GGF;   | VU   | v    | P,S           |            | 200      | 200      | 0    |          |       |        |             | 49              | 0.22                 | 79             | 0.23                   |                   |               |         |
| Mesacanthotelson setosus                    | MeSe;  |      | r    | S             |            | 200      | 200      | 0    |          | Y     |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Mesacanthotelson<br>tasmaniae               | МеТа;  |      | r    | S             |            | 200      | 200      | 0    |          | Y     |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Micropathus kiernani                        | SSCC;  | CR   | е    | P,S           |            | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Migas plomleyi                              | PTS;   |      | е    | P,S           |            | 200      | 200      | 0    | Y        |       | Y      |             | 1               | 1.00                 | 2              | 1.00                   | Р                 | CLL;          | Y       |
| Miselaoma weldii                            | MiWe;  |      | е    | Р             |            | 200      | 200      | 0    |          |       |        | a           | 1               | 1.00                 | 2              | 1.00                   | Р                 | CLL;          |         |
| Neophema chrysogaster<br>(breeding habitat) | OBP_b; | CR   | е    | S             |            | 500      | 1000     | 0    |          |       | Y      |             | 23              | 0.52                 | 42             | 0.67                   |                   |               |         |
| Neophema chrysogaster<br>(foraging habitat) | OBP_f; | CR   | е    | S             |            | 500      | 1000     | 0    |          |       | Y      |             | 23              | 0.52                 | 42             | 0.67                   |                   |               |         |
| Numenius<br>madagascariensis                | EClw;  |      | е    | S             |            | 200      | 500      | 0    | Y        |       | Y      |             | 4               | 0.50                 | 4              | 0.50                   | Р                 | CLL;          |         |
| Oecetis gilva                               | OeGi;  |      | r    | Р             |            | 200      | 200      | 0    |          |       | Y      |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          |         |
| Olgania excavata                            | OlEx;  |      | r    | Р             |            | 200      | 100      | 0    |          |       | Y      |             | 4               | 1.00                 | 4              | 1.00                   |                   | CLL;          | Y       |
| Onchotelson<br>brevicaudatus                | OnBr;  |      | r    | S             |            | 200      | 200      | 0    | Y        | Y     |        |             | 2               | 0.00                 | 2              | 0.00                   | Р                 | CLL;          | Y       |
| Onchotelson spatulatus                      | OnSp;  |      | е    | S             |            | 200      | 200      | 0    | Y        | Y     |        |             | 0               | -1.00                | 0              | -1.00                  | Р                 | CLL;          | Y       |
| Oreisplanus munionga<br>subsp. larana       | MSk;   | VU   | е    | P,S           |            | 200      | 500      | 0    |          |       | Y      |             | 7               | 0.29                 | 15             | 0.27                   | Р                 |               | Y       |
| Oreixenica ptunarra                         | PBB;   | EN   | v    | P,S           |            | 1000     | 500      | 0    |          |       | Y      |             | 34              | 0.26                 | 62             | 0.18                   |                   |               |         |
| Oreixenica ptunarra<br>subsp. angeli        | PBB;   | EN   | рv   | P,S           |            | 1000     | 500      | 0    |          |       | Y      |             | 34              | 0.26                 | 62             | 0.18                   |                   |               | Y       |
| Oreixenica ptunarra<br>subsp. ptunarra      | PBB;   | EN   | рv   | P,S           |            | 1000     | 500      | 0    |          |       | Y      |             | 34              | 0.26                 | 62             | 0.18                   |                   |               |         |
| Oreixenica ptunarra<br>subsp. roonina       | PBB;   | EN   | рv   | P,S           |            | 1000     | 500      | 0    |          |       | Y      |             | 34              | 0.26                 | 62             | 0.18                   |                   |               | Y       |

| Species                              | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Orphninotrichia maculata             | OrMa;  |      | r    | Р             |            | 200      | 200      | 0    | Y        |       | Y      |             | 2               | 0.50                 | 3              | 0.67                   | Р                 | CLL;          |         |
| Orthotrichia adornata                | OrAd;  |      | r    | Р             |            | 200      | 200      | 0    | Y        |       | Y      |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          |         |
| Oxyethira mienica                    | OxMi;  |      | r    | Р             |            | 200      | 200      | 0    | Y        |       | Y      |             | 10              | 0.70                 | 15             | 0.73                   |                   |               | Y       |
| Paragalaxias dissimilis              | ShG;   | VU   | v    | S             |            | 200      | 500      | 0    | Y        | Y     |        |             | 5               | 0.00                 | 7              | 0.00                   |                   |               | Y       |
| Paragalaxias eleotroides             | GLG;   | VU   | v    | S             |            | 200      | 500      | 0    | Y        | Y     |        |             | 5               | 0.00                 | 6              | 0.00                   |                   | CLL;          | Y       |
| Paragalaxias julianus                | PaJu;  |      | r    | Р             |            | 200      | 500      | 0    | Y        | Y     |        |             | 5               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Paragalaxias mesotes                 | APgx;  | EN   | е    | S             |            | 200      | 200      | 0    | Y        |       |        |             | 3               | 0.00                 | 4              | 0.00                   |                   | CLL;          | Y       |
| Pardalotus quadragintus              | P40_c; | EN   | е    | S             |            | 200      | 200      | 0    |          |       |        |             | 21              | 0.62                 | 62             | 0.61                   |                   |               | Y       |
| Pardalotus quadragintus<br>(habitat) | P40_h; | EN   | е    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | 1.00                 | -1             | 1.00                   |                   |               | Y       |
| Parvotettix rangaensis               | PRCC;  |      | r    | Р             |            | 200      | 200      | 0    |          |       |        |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Parvotettix whinrayi                 | WCC;   |      | r    | Р             |            | 200      | 200      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Pasmaditta<br>jungermanniae          | CGS;   |      | v    | P,S           |            | 200      | 200      | 0    | Y        |       | Y      |             | 1               | 1.00                 | 2              | 0.50                   | Р                 | CLL;          | Y       |
| Perameles gunnii                     | EBB;   | VU   |      | Р             |            | 500      | 2000     | 1980 |          |       | Y      |             | 107             | 0.07                 | 216            | 0.07                   | Р                 | LDF;          |         |
| Perameles gunnii subsp.<br>gunnii    | EBB;   | VU   |      | Р             |            | 500      | 2000     | 1980 |          |       | Y      |             | 107             | 0.07                 | 216            | 0.07                   | Р                 | LDF;          |         |
| Phrantela annamurrayae               | PhAn;  |      | r    | P, S          |            | 200      | 200      | 0    | Y        |       |        |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Phrantela conica                     | PhCo;  |      | r    | P, S          |            | 200      | 200      | 0    | Y        |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Phrantela marginata                  | PhMa;  |      | r    | P, S          |            | 200      | 200      | 0    | Y        |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   | CLL;          | Y       |
| Phrantela pupiformis                 | PhPu;  |      | r    | P, S          |            | 200      | 200      | 0    | Y        |       |        |             | 5               | 0.40                 | 10             | 0.30                   | Р                 |               | Y       |
| Platycercus caledonicus<br>brownii   | KIGR;  |      | v    | S             |            | 200      | 2000     | 0    |          |       | Y      |             | 2               | 0.50                 | 3              | 0.33                   |                   | CLL;          | Y       |
| Plesiothele fentoni                  | LFTS;  |      | е    | Р             |            | 200      | 200      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 | CLL;          | Y       |
| Podiceps cristatus                   | GCB;   |      | v    | S             |            | 0        | 0        | 0    |          |       |        |             | 9               | 0.11                 | 10             | 0.10                   | Р                 |               |         |

| Species                                     | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Poliocephalus cristatus<br>subsp. australis | GCB;   |      | рv   | S             |            | 0        | 0        | 0    |          |       |        |             | 9               | 0.11                 | 10             | 0.10                   | Р                 |               |         |
| Prototroctes maraena                        | AGrl;  | VU   | v    | S             |            | 200      | 500      | 0    | Y        | Y     |        |             | 36              | 0.33                 | 50             | 0.28                   |                   | LDF;          |         |
| Pseudalmenus chlorinda<br>tax myrsilus      | THB;   |      | r    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 2               | 1.00                 | 3              | 1.00                   |                   | CLL;          | Y       |
| Pseudemoia<br>pagenstecheri                 | TSk;   |      | v    | S             |            | 200      | 500      | 0    |          |       | Y      |             | 11              | 0.27                 | 15             | 0.33                   |                   |               |         |
| Pseudemoia rawlinsoni                       | GGS;   |      | r    | S             |            | 200      | 500      | 0    |          |       | Y      |             | 8               | 0.38                 | 9              | 0.44                   |                   |               |         |
| Pseudomys<br>novaehollandiae                | PsNo;  | VU   | е    | Р             |            | 200      | 500      | 0    |          |       | Y      |             | 9               | 0.89                 | 16             | 0.94                   |                   |               |         |
| Pseudotyrannochthonius<br>typhlus           | PsTy;  |      | r    | Р             |            | 200      | 100      | 0    |          |       | Y      |             | 4               | 1.00                 | 5              | 0.80                   |                   | CLL;          | Y       |
| Ramiheithrus kocinus                        | RaKo;  |      | r    | Р             |            | 200      | 200      | 0    | Y        |       | Y      |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Roblinella agnewi                           | RoAg;  |      | r    | Р             |            | 200      | 500      | 0    |          |       | Y      |             | 2               | 1.00                 | 3              | 1.00                   |                   | CLL;          | Y       |
| Sarcophilus harrisii (dens)                 | TD_d;  | EN   | е    | S             |            | 0        | 0        | 0    |          |       |        |             | 286             | 0.37                 | 804            | 0.36                   |                   | LDF;DN;       | Y       |
| <i>Sarcophilus harrisii</i> (post<br>2005)  | TD_h;  | EN   | е    | Р             |            | 200      | 2000     | 2005 |          |       | Y      |             | 286             | 0.37                 | 804            | 0.36                   |                   | LDF;          | Y       |
| Schayera baiulus                            | SG;    |      | е    | P,S           |            | 200      | 500      | 0    |          |       | Y      |             | -1              | 1.00                 | -1             | 1.00                   | Р                 | CLL;          | Y       |
| Stenopsychodes lineata                      | StLin; |      | r    | Р             |            | 200      | 200      | 0    | Y        |       | Y      |             | 1               | 1.00                 | 1              | 1.00                   | Р                 | CLL;          | Y       |
| Sterna albifrons subsp.<br>sinensisi        |        |      | ре   | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Sterna nereis subsp.<br>nereis              |        | VU   | v    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Sterna striata                              |        |      | v    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Sternula albifrons subsp.<br>sinensisi      |        |      | е    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Sternula nereis                             |        | PVU  | pv   | S             |            | 200      | 200      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |

| Species                                                      | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Tasimia drepana                                              | TaDr;  |      | r    | Р             |            | 200      | 500      | 0    | Y        |       | Y      |             | 1               | 1.00                 | 1              | 1.00                   | Р                 | CLL;          | Y       |
| Taskiria mccubbini                                           |        |      | е    | S             |            | 0        | 0        | 0    |          |       | -      |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Taskiropsyche lacustris                                      |        |      | е    | S             |            | 0        | 0        | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Tasmanipatus<br>anophthalmus                                 | BVW;   | EN   | е    | S             |            | 200      | 200      | 0    |          |       | Y      |             | 10              | 0.60                 | 23             | 0.57                   |                   |               | Y       |
| Tasmanipatus barretti                                        | GVW;   |      | r    | S             |            | 200      | 200      | 0    |          |       | Y      |             | 15              | 0.53                 | 42             | 0.57                   |                   |               | Y       |
| Tasmanotrechus cockerilli                                    | TaCo;  |      | r    | Р             |            | 200      | 200      | 0    |          |       | Y      |             | 4               | 0.75                 | 8              | 0.88                   |                   |               | Y       |
| Tasmaphena lamproides                                        | KS;    | 0    | r    | P,S           |            | 200      | 200      | 0    |          |       | Y      |             | 12              | 0.33                 | 26             | 0.27                   |                   |               | Y       |
| Tasniphargus tyleri                                          | ТаТу;  | 0    | r    | S             |            | 200      | 200      | 0    | Y        | Y     | 2      |             | 1               | 0.00                 | 1              | 0.00                   | Р                 | CLL;          | Y       |
| Tyto castanops (nests +<br>roosts)                           | MO_n;  | PVU  | ре   | Р             |            | 200      | 100      | 0    |          |       |        |             | 17              | 0.47                 | 17             | 0.47                   |                   | LDF;DN;       |         |
| Tyto novaehollandiae<br>(breeding habitat)                   | MO_b;  | VU   | е    | S             |            | 200      | 100      | 0    |          |       |        |             | 16              | 0.50                 | 16             | 0.50                   |                   | LDF;          |         |
| Tyto novaehollandiae<br>(nests & roosts)                     | MO_n;  | PVU  | ре   | Р             |            | 200      | 100      | 0    |          |       |        |             | 17              | 0.47                 | 17             | 0.47                   |                   | LDF;DN;       |         |
| Tyto novaehollandiae<br>subsp. castanops (nests &<br>roosts) | MO_n;  | VU   | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | 17              | 0.47                 | 17             | 0.47                   |                   | LDF;DN;       |         |
| Uramphisopus pearsoni                                        | UrPe;  |      | r    | Р             |            | 200      | 200      | 0    | Y        | Y     |        |             | 0               | -1.00                | 0              | -1.00                  | Р                 | CLL;          | Y       |
| Vombatus ursinus subsp.<br>ursinus                           | VoUU;  | VU   |      | Р             |            | 500      | 1000     | 0    |          |       | N      |             | 2               | 1.00                 | 2              | 1.00                   |                   | LDF;          | Y       |
| Fungi                                                        |        |      |      |               |            |          |          |      |          |       |        |             |                 |                      |                |                        |                   |               |         |
| Bunodophoron notatum                                         | BuNo;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Calycidium cuneatum                                          | CaCu;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Calycidium polycarpum                                        | CaPol; |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |

10

| Species                           | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Erioderma sorediatum              | ErSo;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Hypotrachyna immaculata           | Hylm;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Hypotrachyna laevigata            | HyLae; |      | v    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Melanelia piliferella             | MePi;  |      | v    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Menegazzia minuta                 | MeMi;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Parmelina pallida                 | PaPal; |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Parmelina whinrayi                | PaWh;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Parmeliopsis ambigua              | ParAm; |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Parmeliopsis hyperopta            | РаНу;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Parmotrema crinitum               | PaCr;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Roccellinastrum<br>neglectum      | RoNe;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Telochistes flavicans             | TeFl;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Xanthoparmelia<br>amphixantha     | XaAm;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Xanthoparmelia<br>graniticola     | XaGr;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Xanthoparmelia<br>jarmaniae       | XaJa;  |      | v    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Xanthoparmelia<br>mannumensis     | XaMa;  |      | v    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Xanthoparmelia<br>microphyllizans | XaMi;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Xanthoparmelia<br>molliuscula     | ХаМо;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Xanthoparmelia oleosa             | XaOl;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |

| Species                              | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Xanthoparmelia<br>subloxodella       | XaSu;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Xanthoparmelia vicaria               | XaVic; |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Xanthoparmelia vicariella            | XaVi;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               | Y       |
| Xanthoparmelia willisii              | XaWi;  |      | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  |                   |               |         |
| Flora                                |        |      |      |               |            |          |          |      |          |       |        |             |                 |                      |                |                        |                   |               |         |
| Abrotanella scapigera                | AbSc;  |      |      | В             | NS;SE;     | 200      | 100      | 0    |          |       |        |             | 16              | 1.00                 | 28             | 1.00                   |                   |               | Y       |
| Acacia axillaris                     | AcAx;  | VU   | v    | Р             |            | 200      | 500      | 0    | Y        |       |        |             | 21              | 0.19                 | 52             | 0.19                   |                   |               |         |
| Acacia derwentiana                   | AcDe;  |      |      | В             | SE;        | 200      | 200      | 0    | Y        |       |        |             | 12              | 0.17                 | 23             | 0.13                   |                   |               | Y       |
| Acacia implexa                       | Aclm;  | 0    |      | В             | FL;        | 200      | 200      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               | 3       |
| Acacia leprosa var.<br>graveolens    | AcVe;  |      |      | В             | CH;KI;NM;  | 200      | 100      | 0    |          |       |        |             | 90              | 0.49                 | 212            | 0.53                   |                   |               |         |
| Acacia longifolia subsp.<br>sophorae | AcLS;  |      |      | В             | NM;NS;     | 200      | 100      | 0    |          |       |        |             | 84              | 0.55                 | 175            | 0.59                   |                   |               |         |
| Acacia mearnsii                      | AcMe;  |      |      | В             | CH;SR;WSW; | 200      | 100      | 0    |          |       |        |             | 91              | 0.27                 | 201            | 0.24                   |                   |               |         |
| Acacia mucronata subsp.<br>dependens | AcMD;  |      |      | В             | NM;        | 200      | 100      | 0    |          |       |        |             | 70              | 0.67                 | 111            | 0.69                   |                   |               | Y       |
| Acacia myrtifolia                    | AcMy;  |      |      | В             | CH;        | 200      | 100      | 0    |          |       |        |             | 113             | 0.51                 | 245            | 0.50                   |                   |               |         |
| Acacia pataczekii                    | AcPa;  |      | r    | Р             |            | 200      | 500      | 0    |          |       |        |             | 7               | 0.71                 | 16             | 0.75                   |                   |               | Y       |
| Acacia riceana                       | AcRi;  |      |      | В             | BL;NS;WSW; | 200      | 100      | 0    |          |       |        |             | 35              | 0.40                 | 79             | 0.51                   |                   |               | Y       |
| Acacia siculiformis                  | AcSi;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 20              | 0.35                 | 32             | 0.34                   |                   |               |         |
| Acacia stricta                       | AcSt;  |      |      | В             | CH;KI;NM;  | 200      | 100      | 0    |          |       |        |             | 67              | 0.46                 | 150            | 0.42                   |                   |               |         |
| Acacia suaveolens                    | AcSua; |      |      | В             | NM;WSW     | 200      | 100      | 0    |          |       |        |             | 72              | 0.50                 | 146            | 0.53                   |                   |               |         |
| Acacia ulicifolia                    | AcUl;  |      | r    | Р             | BL;NS;SR;  | 200      | 100      | 0    |          |       |        |             | 37              | 0.43                 | 71             | 0.41                   |                   |               |         |
| Species                    | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Acacia uncifolia           | AcUn;  |      | r    | Р             |            | 200      | 500      | 0    |          |       |        |             | 3               | 0.33                 | 5              | 0.20                   | Р                 |               |         |
| Acaena montana             | AcMo;  |      |      | В             | NM;SE;WSW; | 200      | 100      | 0    |          |       |        |             | 37              | 0.76                 | 63             | 0.79                   |                   |               | Y       |
| Acaena pallida             | AcPal; |      |      | В             | SE;SR;     | 200      | 100      | 0    |          |       |        |             | 14              | 0.71                 | 20             | 0.80                   |                   |               |         |
| Acianthus caudatus         | AcCa;  |      |      | В             | NM;WSW;    | 200      | 100      | 0    |          |       |        |             | 71              | 0.44                 | 120            | 0.47                   |                   |               |         |
| Acradenia frankliniae      | AcFr;  |      |      | В             | KI;        | 200      | 100      | 0    |          |       |        |             | 11              | 0.91                 | 23             | 0.96                   |                   |               | Y       |
| Acrotriche affinis         | AcAf;  |      |      | В             | KI;WSW;    | 200      | 100      | 0    |          |       | 0      |             | 4               | 0.75                 | 7              | 0.71                   |                   |               |         |
| Acrotriche cordata         | AcCo;  |      | v    | Р             |            | 200      | 200      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Actinotus bellidioides     | AcBe;  |      |      | В             | NS;SE;     | 200      | 100      | 0    |          |       |        |             | 41              | 0.98                 | 72             | 0.97                   |                   |               | ,       |
| Actinotus moorei           | AcMoo; |      |      | В             | NS;SE;     | 200      | 100      | 0    |          |       | -      |             | 22              | 0.95                 | 36             | 0.94                   |                   |               | Y       |
| Actinotus suffocatus       | AcSuf; |      |      | В             | NS;        | 200      | 100      | 0    |          |       |        |             | 26              | 1.00                 | 58             | 1.00                   |                   |               | Y       |
| Agastachys odorata         | AgOd;  |      |      | В             | NS;        | 200      | 100      | 0    |          |       |        |             | 54              | 0.89                 | 109            | 0.90                   |                   |               | Y       |
| Agrostis aemula            | AgAe;  |      |      | В             | KI;NS;BL;  | 200      | 100      | 0    |          |       |        |             | 79              | 0.33                 | 129            | 0.30                   |                   |               |         |
| Agrostis australiensis     | LaSS;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 20              | 0.65                 | 33             | 0.67                   |                   |               |         |
| Agrostis diemenica         | AgDi;  | -    | r    | Р             |            | 200      | 100      | 0    |          |       | 0      |             | 7               | 0.71                 | 9              | 0.78                   |                   |               | Y       |
| Agrostis muelleriana       | AgMu;  |      |      | В             | WSW;NM;SR; | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 3              | 0.67                   |                   |               |         |
| Agrostis propinqua         | AgPr;  |      |      | В             | BL;NM;     | 200      | 100      | 0    |          |       |        |             | 25              | 0.56                 | 34             | 0.56                   |                   |               |         |
| Agrostis thompsoniae       | AgTh;  |      |      | В             | NS;WSW;    | 200      | 100      | 0    |          |       |        |             | 9               | 0.89                 | 12             | 0.92                   |                   |               |         |
| Agrostis venusta           | AgVe;  | 0    |      | В             | KI;        | 200      | 100      | 0    |          |       |        |             | 74              | 0.65                 | 112            | 0.67                   |                   |               |         |
| Allittia cardiocarpa       | AlCar; | -    |      | В             | NS;BL;SR;  | 200      | 100      | 0    |          |       |        |             | 27              | 0.44                 | 29             | 0.45                   |                   |               |         |
| Allocasuarina crassa       | AlCr;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Allocasuarina duncanii     | AlDu;  |      | r    | Р             | SR;        | 200      | 100      | 0    |          |       |        |             | 10              | 0.80                 | 20             | 0.85                   |                   |               | Y       |
| Allocasuarina littoralis   | AlLi;  | -    |      | В             | CH;KI;     | 200      | 100      | 0    |          |       |        |             | 146             | 0.41                 | 399            | 0.44                   |                   |               |         |
| Allocasuarina verticillata | AlVe;  |      |      | В             | WSW;       | 200      | 100      | 0    |          |       |        |             | 107             | 0.38                 | 247            | 0.43                   |                   |               |         |
| Allocasuarina zephyrea     | AlZe;  |      |      | В             | NS;SE;     | 200      | 100      | 0    |          |       |        |             | 25              | 0.76                 | 38             | 0.82                   |                   |               | Y       |

| Species                               | Code   | EPBC  | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------|--------|-------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Alternanthera denticulata             | AlDe;  |       | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 10             | 0.40                   | Р                 |               |         |
| Alyxia buxifolia                      | AlBu;  |       |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 18              | 0.83                 | 28             | 0.86                   |                   |               |         |
| Ambuchanania<br>Ieucobryoides         | AmLe;  |       | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 6              | 1.00                   |                   |               | Y       |
| Amphibromus archeri                   | AmpAr; |       |      | В             | NS;SR;              | 200      | 100      | 0    |          |       |        | -           | 10              | 0.50                 | 11             | 0.55                   |                   |               |         |
| Amphibromus fluitans                  | AmFl;  | VU    |      | Р             |                     | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Amphibromus<br>macrorhinus            | AmMa;  |       | е    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 8               | 0.50                 | 13             | 0.54                   |                   |               |         |
| Amphibromus neesii                    | AmNe;  |       | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 15              | 0.33                 | 17             | 0.29                   |                   |               |         |
| Amphibromus recurvatus                | AmRe;  |       |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 33              | 0.70                 | 43             | 0.70                   |                   |               |         |
| Amphibromus sinuatus                  | AmSi;  |       |      | В             | BL;FL;NM;SE;        | 200      | 100      | 0    |          |       |        |             | 12              | 0.17                 | 12             | 0.17                   |                   |               |         |
| Androstoma verticillata               | AnVe;  |       |      | В             | NS;SR;              | 200      | 100      | 0    |          |       |        |             | 11              | 0.91                 | 18             | 0.94                   |                   |               | Y       |
| Anemone crassifolia                   | AnCr;  |       |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 11              | 1.00                 | 17             | 1.00                   |                   |               | Y       |
| Angianthus preissianus                | AnPre; |       |      | В             | KI;NM;              | 200      | 100      | 0    |          |       |        |             | 21              | 0.57                 | 30             | 0.57                   |                   |               |         |
| Anisotome procumbens                  | AnPro; |       |      | В             | CH;SE;              | 200      | 100      | 0    |          |       |        |             | 15              | 0.87                 | 21             | 0.86                   |                   |               | Y       |
| Anodopetalum<br>biglandulosum         | AnBi;  |       |      | В             | SE;SR;              | 200      | 100      | 0    |          |       |        |             | 110             | 0.79                 | 277            | 0.82                   |                   |               | Y       |
| Anogramma leptophylla                 | AnLe;  |       | v    | Р             | BL;NM;              | 200      | 100      | 0    |          |       |        |             | 6               | 0.67                 | 8              | 0.63                   |                   |               |         |
| Aphanes australiana                   | AphAu; | 6<br> |      | В             | BL;FL;NM;SE;<br>SR; | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 8              | 0.38                   |                   |               |         |
| Aphelia gracilis                      | ApAg;  |       | r    | Р             | BL;NM;NS;SE;<br>SR; | 200      | 100      | 0    |          |       |        |             | 20              | 0.40                 | 34             | 0.44                   |                   |               |         |
| Aphelia pumilio                       | ApPu;  |       | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 18              | 0.39                 | 34             | 0.53                   |                   |               |         |
| Apium annuum                          | ApAn;  |       |      | В             | FL;NM;              | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 4              | 0.50                   |                   |               |         |
| Apium prostratum subsp.<br>prostratum | ApPP;  |       |      | В             | NM;NS;              | 200      | 100      | 0    |          |       |        |             | 54              | 0.57                 | 94             | 0.64                   |                   |               |         |

| Species                                             | Code  | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------------------|-------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Apium prostratum subsp.<br>prostratum var filiforme | ApPF; |      |      | В             | CH;NM;NS;                            | 200      | 100      | 0    |          |       |        |             | 16              | 0.63                 | 20             | 0.65                   | -                 |               |         |
| Apodasmia brownii                                   | ApBr; |      |      | В             | BL;CH;NS;                            | 200      | 100      | 0    |          |       |        |             | 55              | 0.51                 | 78             | 0.51                   |                   |               |         |
| Archeria hirtella                                   | ArHi; |      |      | В             | КІ;                                  | 200      | 100      | 0    |          |       |        |             | 21              | 0.86                 | 33             | 0.91                   |                   |               | Y       |
| Archeria serpyllifolia                              | ArSe; |      |      | В             | NS;                                  | 200      | 100      | 0    |          |       |        |             | 23              | 0.96                 | 36             | 0.97                   |                   |               |         |
| Argentipallium dealbatum                            | ArDe; |      |      | В             | NM;                                  | 200      | 100      | 0    |          |       |        | <b>-</b>    | 97              | 0.57                 | 153            | 0.57                   |                   |               |         |
| Argentipallium<br>obtusifolium                      | ArOb; |      |      | В             | FL;                                  | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               |         |
| Argentipallium Xspiceri                             | ArSp; | CR   |      | Р             | SE;SR;                               | 200      | 100      | 0    |          |       |        |             | 4               | 0.00                 | 4              | 0.00                   | Р                 |               | Y       |
| Argyrotegium fordianum                              | ArFo; | -    | r    | Р             | BL;CH;                               | 200      | 200      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               |         |
| Argyrotegium mackayi                                | ArMa; |      |      | В             | KI;FL;NM;                            | 200      | 100      | 0    |          |       |        |             | 11              | 0.73                 | 14             | 0.79                   |                   |               |         |
| Argyrotegium nitidulum                              | ArNi; | VU   |      | Р             | BL;CH;                               | 200      | 200      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Argyrotegium<br>poliochlorum                        | ArPo; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 10             | 1.00                   |                   |               |         |
| Aristotelia peduncularis                            | ArPe; |      |      | В             | NM;FL;                               | 200      | 100      | 0    |          |       |        |             | 155             | 0.67                 | 330            | 0.69                   |                   |               | Y       |
| Arthropodium minus                                  | ArMi; |      |      | В             | CH;KI;NS;SE;                         | 200      | 100      | 0    |          |       |        |             | 29              | 0.31                 | 45             | 0.29                   |                   |               |         |
| Arthropodium pendulum                               | ArPe; |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 155             | 0.67                 | 330            | 0.69                   |                   |               | Y       |
| Arthropodium strictum                               | ArSt; |      | r    | Р             | BL;CH;                               | 200      | 100      | 0    |          |       |        |             | 51              | 0.22                 | 113            | 0.23                   |                   |               |         |
| Asperula gunnii                                     | AsGu; |      |      | В             | FL;NM;WSW;                           | 200      | 100      | 0    |          |       | 0      |             | 63              | 0.68                 | 116            | 0.66                   |                   |               |         |
| Asperula minima                                     | AsMi; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 11              | 0.36                 | 16             | 0.25                   |                   |               |         |
| Asperula pusilla                                    | AsPu; |      |      | В             | KI;NS;FL;NM;<br>SE;                  | 200      | 100      | 0    |          |       |        |             | 29              | 0.62                 | 51             | 0.65                   |                   |               |         |
| Asperula scoparia subsp.<br>scoparia                | AsSS; |      | r    | Р             | NR;SR;                               | 200      | 100      | 0    |          |       |        |             | 25              | 0.28                 | 45             | 0.22                   |                   |               |         |

| Species                                      | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Asperula subsimplex                          | AsSu;  |      | r    | Р             | FL;KI;NM;SE;S<br>R; | 200      | 500      | 0    | Y        |       |        |             | 18              | 0.50                 | 22             | 0.45                   |                   |               |         |
| Asplenium hookerianum                        | AsHo;  | VU   | e    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 3              | 0.67                   |                   |               |         |
| Asplenium obtusatum<br>subsp. northlandicum  | AspON; |      |      | В             | BL;                 | 200      | 100      | 0    |          |       |        |             | 21              | 0.95                 | 29             | 0.97                   |                   |               |         |
| Asplenium trichomanes                        | AsTU;  |      |      | В             | KI;FL;BL;SE;        | 200      | 100      | 0    |          |       |        |             | 6               | 1.00                 | 6              | 1.00                   |                   |               |         |
| Asplenium trichomanes<br>subsp. quadrivalens | AsTQ;  |      |      | В             | KI;FL;BL;SE;        | 200      | 100      | 0    |          |       |        |             | 21              | 0.81                 | 26             | 0.85                   |                   |               |         |
| Asplenium trichomanes subsp. trichomanes     | AsTT;  |      | v    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 3              | 1.00                   |                   |               |         |
| Astelia alpina var alpina                    | AsAA;  |      |      | В             | NM;SE;              | 200      | 100      | 0    |          |       |        |             | 60              | 0.97                 | 151            | 0.96                   |                   |               | Y       |
| Asterotrichion discolor                      | AsDi;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 42              | 0.40                 | 86             | 0.36                   |                   |               | Y       |
| Astroloma pinifolium                         | AsPi;  |      |      | В             | CH;KI;SR;WS<br>W;   | 200      | 100      | 0    |          |       |        |             | 33              | 0.70                 | 66             | 0.67                   |                   |               |         |
| Atriplex australasica                        | AtAu;  |      |      | В             | SE;                 | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Atriplex billardierei                        | AtBi;  |      |      | В             | SR;                 | 200      | 100      | 0    |          |       |        |             | 12              | 0.83                 | 17             | 0.88                   |                   |               |         |
| Atriplex paludosa subsp.<br>paludosa         | AtPP;  |      |      | В             | KI;NS;FL;SE;        | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Atriplex suberecta                           | AtSu;  |      | v    | Р             |                     | 200      | 200      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               |         |
| Australina pusilla subsp.<br>muelleri        | AuPM;  |      | r    | Р             | SE;SR;              | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               |         |
| Australopyrum<br>pectinatum                  | AuPe;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 59              | 0.63                 | 120            | 0.69                   |                   |               | Y       |
| Australopyrum velutinum                      | AuVe;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 6              | 0.33                   | Р                 |               |         |
| Austrocynoglossum<br>Iatifolium              | AuLat; |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 7               | 0.43                 | 12             | 0.33                   |                   |               |         |
| Austrostipa aphylla                          | AuAp;  |      |      | В             | FL;NM;              | 200      | 100      | 0    |          |       |        |             | 43              | 0.44                 | 83             | 0.46                   |                   |               | Y       |

| Species                                       | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Austrostipa bigeniculata                      | AuBi;  |      | r    | Р             | SE;NS;FL;CH;<br>NM; | 200      | 500      | 0    |          |       |        |             | 13              | 0.08                 | 20             | 0.05                   | Р                 |               |         |
| Austrostipa blackii                           | AuBl;  |      | r    | Р             | FL;NS;SE;           | 200      | 500      | 0    |          |       |        |             | 8               | 0.25                 | 10             | 0.20                   |                   |               |         |
| Austrostipa flavescens                        | AuFl;  |      |      | В             | NM;NS;WSW;          | 200      | 100      | 0    |          |       |        |             | 57              | 0.39                 | 95             | 0.47                   |                   |               |         |
| Austrostipa mollis                            | AuMo;  |      |      | В             | CH;KI;              | 200      | 100      | 0    |          |       |        |             | 72              | 0.36                 | 121            | 0.34                   |                   |               |         |
| Austrostipa nodosa                            | AuNo;  |      | r    | Р             | BL;CH;SR;           | 200      | 500      | 0    |          |       |        |             | 48              | 0.21                 | 118            | 0.17                   |                   |               |         |
| Austrostipa pubinodis                         | AuPu;  |      |      | В             | CH;KI;NS;           | 200      | 100      | 0    |          |       |        |             | 93              | 0.16                 | 171            | 0.19                   |                   |               |         |
| Austrostipa rudis subsp.<br>australis         | AuRA;  |      |      | В             | CH;NM;NS;           | 200      | 100      | 0    |          |       |        |             | 48              | 0.21                 | 82             | 0.23                   |                   | -             | 5       |
| Austrostipa scabra                            | AuSc;  |      | r    | Р             | NM;                 | 200      | 200      | 0    |          |       |        |             | 27              | 0.41                 | 51             | 0.35                   |                   |               |         |
| Austrostipa scabra subsp.<br>falcata          | AuSF;  |      | pr   | Р             | NM;                 | 200      | 200      | 0    |          |       |        |             | 27              | 0.04                 | 67             | 0.09                   | Р                 |               |         |
| Austrostipa scabra subsp.<br>scabra           | AuSS;  |      | pr   | Р             | NM;                 | 200      | 200      | 0    |          |       |        |             | 13              | 0.08                 | 21             | 0.10                   | Р                 |               |         |
| Austrostipa semibarbata                       | AuSe;  |      |      | В             | BL;CH;NS;           | 200      | 100      | 0    |          |       |        |             | 58              | 0.22                 | 99             | 0.24                   |                   |               |         |
| Austrostipa stipoides                         | AuSti; |      |      | В             | NM;NS;              | 200      | 100      | 0    |          |       |        |             | 68              | 0.66                 | 112            | 0.68                   |                   |               |         |
| Austrostipa stuposa                           | AuStu; |      |      | В             | BL;CH;              | 200      | 100      | 0    |          |       |        |             | 95              | 0.20                 | 182            | 0.19                   |                   |               |         |
| Azolla filiculoides                           | AzFi;  |      |      | В             | FL;NM;SR;           | 200      | 100      | 0    |          |       |        |             | 21              | 0.29                 | 27             | 0.26                   |                   |               |         |
| Baeckea gunniana                              | BaGun; |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 56              | 0.84                 | 129            | 0.88                   |                   |               |         |
| Baeckea leptocaulis                           | BaLe;  |      |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 46              | 0.91                 | 96             | 0.96                   |                   |               | Y       |
| Baloskion australe                            | BalAu; | •    |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 111             | 0.68                 | 220            | 0.73                   |                   |               |         |
| Baloskion tetraphyllum<br>subsp. tetraphyllum | BaTT;  |      |      | В             | NM;SE;              | 200      | 100      | 0    |          |       |        |             | 80              | 0.74                 | 155            | 0.74                   |                   |               | -       |
| Banksia serrata                               | BaSe;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 11             | 0.45                   |                   |               |         |
| Barbarea australis                            | BaAu;  | EN   | е    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 16              | 0.44                 | 34             | 0.38                   |                   |               | Y       |
| Baumea acuta                                  | BaAc;  |      |      | В             | BL;CH;NS;           | 200      | 100      | 0    |          |       |        |             | 57              | 0.51                 | 81             | 0.48                   |                   |               |         |

| Species                                  | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Baumea articulata                        | BaAr;  |      | r    | Р             | SE;                 | 200      | 100      | 0    | Y        |       |        |             | 4               | 0.75                 | 5              | 0.80                   |                   |               |         |
| Baumea gunnii                            | BaGu;  |      | r    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 23              | 0.43                 | 37             | 0.49                   |                   |               |         |
| Baumea juncea                            | BaJu;  |      |      | В             | NM;NS;              | 200      | 100      | 0    |          |       |        |             | 68              | 0.49                 | 115            | 0.56                   |                   |               |         |
| Baumea rubiginosa                        | BaRu;  |      |      | В             | KI;NS;CH;NM;<br>BL; | 200      | 100      | 0    |          |       |        |             | 17              | 0.47                 | 21             | 0.48                   |                   |               |         |
| Bedfordia arborescens                    | BeAr;  |      | v    | Р             | FL;                 | 200      | 500      | 0    |          |       |        |             | 2               | 0.00                 | 5              | 0.00                   | Р                 |               |         |
| Bedfordia salicina                       | BeSa;  |      |      | В             | KI;WSW;             | 200      | 100      | 0    |          |       |        |             | 156             | 0.48                 | 387            | 0.50                   |                   |               | Y       |
| Bertya tasmanica subsp.<br>tasmanica     | BeTaT; | EN   | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 8               | 0.50                 | 11             | 0.36                   |                   | 9             | Y       |
| Beyeria viscosa                          | BeVi;  |      |      | В             | КΙ;                 | 200      | 100      | 0    |          |       |        |             | 112             | 0.54                 | 226            | 0.53                   |                   |               |         |
| Billardiera macrantha                    | BiMa;  |      |      | В             | NS;WSW;CH;          | 200      | 100      | 0    |          |       |        |             | 37              | 0.70                 | 54             | 0.74                   |                   |               |         |
| Billardiera mutabilis                    | BiMu;  |      |      | В             | KI;WSW;CH;          | 200      | 100      | 0    |          |       |        |             | 67              | 0.42                 | 136            | 0.41                   |                   |               |         |
| Billardiera nesophila                    | BiNe;  |      |      | В             | KI;CH;BL;SR;        | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 8              | 0.50                   |                   |               | Y       |
| Billardiera ovalis                       | BiOv;  |      |      | В             | KI;                 | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 12             | 0.83                   |                   |               | Y       |
| Billardiera viridiflora                  | BiVi;  |      |      | В             | WSW;                | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |
| Blechnum cartilagineum                   | BlCa;  |      | v    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 10              | 0.50                 | 18             | 0.50                   |                   |               |         |
| Blechnum minus                           | BlMi;  | 9    |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 68              | 0.43                 | 100            | 0.41                   |                   |               |         |
| Blechnum patersonii<br>subsp. patersonii | BIPP;  |      |      | В             | KI;FL;SR;           | 200      | 100      | 0    |          |       |        |             | 10              | 0.80                 | 14             | 0.86                   |                   |               |         |
| Blechnum penna-marina<br>subsp. alpina   | BIPA;  |      |      | В             | KI;NM;              | 200      | 100      | 0    |          |       |        |             | 81              | 0.68                 | 167            | 0.70                   |                   |               |         |
| Blechnum vulcanicum                      | BlVu;  |      |      | В             | KI;                 | 200      | 100      | 0    |          |       |        |             | 14              | 0.64                 | 16             | 0.63                   |                   |               |         |
| Bolboschoenus caldwellii                 | BoCa;  |      | r    | Р             | FL;WSW;             | 200      | 100      | 0    |          |       |        |             | 17              | 0.29                 | 27             | 0.30                   |                   |               |         |
| Bolboschoenus medianus                   | BoMe;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   |               |         |
| Boronia citriodora                       | BoCi;  |      |      | В             | FL;NM;SE;           | 200      | 100      | 0    |          |       |        |             | 40              | 0.92                 | 69             | 0.94                   |                   |               | Y       |

| Species                                   | Code  | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------|-------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Boronia citriodora subsp.<br>citriodora   | BoCC; |      |      | В             | FL;NM;SE;            | 200      | 100      | 0    |          |       |        |             | 23              | 0.87                 | 34             | 0.91                   |                   |               | Y       |
| Boronia citriodora subsp.<br>orientalis   | BoCO; |      |      | В             | FL;NM;SE;            | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               | Y       |
| Boronia citriodora subsp.<br>paulwilsonii | BoCP; |      |      | В             | FL;NM;SE;            | 200      | 100      | 0    |          |       |        |             | 9               | 0.78                 | 17             | 0.88                   |                   |               | Y       |
| Boronia elisabethiae                      | BoEl; |      |      | В             | SR;                  | 200      | 100      | 0    |          |       |        |             | 20              | 0.85                 | 24             | 0.88                   |                   |               | Y       |
| Boronia gunnii                            | BoGu; | VU   | v    | Р             |                      | 200      | 500      | 0    | Y        |       |        |             | 3               | 1.00                 | 6              | 0.83                   |                   |               | Y       |
| Boronia hemichiton                        | BoHe; | VU   | e    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 4              | 1.00                   |                   |               | Y       |
| Boronia hippopala                         | BoHi; | VU   | v    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 2               | 0.00                 | 10             | 0.30                   | Р                 |               | Y       |
| Boronia nana                              | BoNU; |      |      | В             | BL;KI;NM;SR;<br>WSW; | 0        | 0        | 0    |          |       |        |             | 25              | 0.48                 | 30             | 0.53                   |                   |               |         |
| Boronia nana var.<br>hyssopifolia         | BoNH; |      |      | В             | BL;KI;NM;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 9               | 0.22                 | 9              | 0.22                   |                   |               |         |
| Boronia nana var. nana                    | BoNN; |      |      | В             | KI;NS;               | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 3              | 1.00                   |                   |               |         |
| Boronia rhomboidea                        | BoRh; |      |      | В             | BL; SE;SR;           | 200      | 100      | 0    |          |       |        |             | 13              | 0.85                 | 19             | 0.89                   |                   |               |         |
| Bossiaea cordigera                        | BoCo; |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 86              | 0.36                 | 151            | 0.37                   |                   |               |         |
| Bossiaea obcordata                        | ВоТа; |      | r    | Р             | FL;SE;               | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 13             | 0.46                   |                   |               | Y       |
| Bossiaea riparia                          | BoRi; |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 65              | 0.48                 | 107            | 0.51                   |                   |               |         |
| Bossiaea tasmanica                        | ВоТа; |      | r    | Р             | FL;SE;               | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 13             | 0.46                   |                   |               | Y       |
| Botrychium lunaria                        | BoLu; |      |      | В             | WSW;NM;SR;<br>SE;    | 200      | 100      | 0    |          |       |        |             | 17              | 0.35                 | 25             | 0.36                   |                   |               |         |
| Brachyglottis brunonis                    | BrBr; |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 9              | 1.00                   |                   |               | Y       |
| Brachyloma ciliatum                       | BrCi; |      | -    | В             | CH;NM;               | 200      | 100      | 0    |          |       |        |             | 53              | 0.49                 | 99             | 0.47                   |                   |               |         |
| Brachyloma depressum                      | BrDe; |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 13              | 0.62                 | 16             | 0.56                   |                   |               |         |
| Brachyscome aculeata                      | BrAc; |      |      | В             | BL;KI;NS;            | 200      | 100      | 0    |          |       |        |             | 71              | 0.42                 | 121            | 0.40                   |                   |               |         |

| Species                                       | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Brachyscome decipiens                         | BrDec; |      |      | В             | BL;NM;WSW;          | 200      | 100      | 0    |          |       |        |             | 28              | 0.39                 | 45             | 0.49                   |                   |               |         |
| Brachyscome diversifolia                      | BrDU;  |      |      | В             | SR;WSW;             | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 8              | 0.88                   |                   |               |         |
| Brachyscome diversifolia<br>var. diversifolia | BrDD;  |      |      | В             | WSW;SR;             | 200      | 100      | 0    |          |       |        |             | 10              | 0.80                 | 15             | 0.80                   |                   |               |         |
| Brachyscome parvula                           | BrPa;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 8               | 0.75                 | 10             | 0.80                   |                   |               |         |
| Brachyscome perpusilla                        | BrPe;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 6               | 1.00                 | 10             | 1.00                   |                   |               |         |
| Brachyscome radicans                          | BrRad; |      |      | В             | NM;SE;              | 200      | 100      | 0    |          |       |        | å           | 18              | 0.72                 | 26             | 0.73                   |                   |               |         |
| Brachyscome radicata                          | BrRa;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        | ō           | 3               | 0.67                 | 5              | 0.80                   |                   |               |         |
| Brachyscome rigidula                          | BrRi;  |      | v    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 18              | 0.44                 | 27             | 0.48                   |                   |               |         |
| Brachyscome spathulata                        | BrSU;  |      |      | В             | KI;NS;              | 200      | 100      | 0    | Î        |       |        |             | 25              | 0.52                 | 34             | 0.62                   |                   |               | -       |
| Brachyscome spathulata<br>subsp. spathulata   | BrSS;  |      |      | В             | BL;FL;KI;NM;<br>NS; | 200      | 100      | 0    |          |       |        |             | 22              | 0.91                 | 31             | 0.94                   |                   |               |         |
| Brunonia australis                            | BrAu;  |      | r    | Р             |                     | 200      | 500      | 0    |          |       |        |             | 30              | 0.30                 | 69             | 0.28                   |                   |               |         |
| Bulbine bulbosa                               | BuBu;  |      |      | В             | BL;KI;NS;SR;        | 200      | 100      | 0    |          |       |        |             | 36              | 0.53                 | 51             | 0.51                   |                   |               |         |
| Bulbine glauca                                | BuGl;  |      |      | В             | BL;KI;NM;NS;<br>SR; | 200      | 100      | 0    |          |       |        |             | 37              | 0.24                 | 63             | 0.21                   |                   |               |         |
| Bulbine semibarbata                           | BuSe;  |      |      | В             | CH;KI;NM;           | 200      | 100      | 0    |          |       |        |             | 18              | 0.50                 | 24             | 0.54                   |                   |               |         |
| Burchardia umbellata                          | BuUm;  |      |      | В             | KI;NS;              | 200      | 100      | 0    |          |       |        |             | 48              | 0.38                 | 86             | 0.33                   |                   |               |         |
| Caesia alpina                                 | CaAl;  |      |      | В             | BL;SE;WSW;          | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 4              | 0.50                   |                   |               |         |
| Caesia calliantha                             | CaCal; |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 28              | 0.29                 | 61             | 0.31                   |                   |               |         |
| Caesia parviflora                             | CaPU;  |      |      | В             | BL;FL;NM;           | 200      | 100      | 0    |          |       |        |             | 17              | 0.29                 | 22             | 0.41                   |                   |               |         |
| Caesia parviflora var<br>minor                | CaPM;  |      |      | В             | NM;BL;              | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 3              | 0.67                   |                   |               |         |
| Caesia parviflora var<br>parviflora           | CaPP;  |      |      | В             | BL;NM;SE;           | 200      | 100      | 0    |          |       |        |             | 13              | 0.31                 | 17             | 0.35                   |                   |               |         |

| Species                          | Code   | EPBC | TSPA  | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------|--------|------|-------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Caesia parviflora var<br>vittata | CaPV;  |      |       | В             | NS;FL;NM;BL;<br>SE; | 200      | 100      | 0    |          |       |        |             | 11              | 0.18                 | 15             | 0.13                   |                   |               |         |
| Caladenia alata                  | CaAla; |      |       | В             | BL;FL;WSW;          | 200      | 100      | 0    |          |       |        |             | 29              | 0.34                 | 39             | 0.38                   |                   |               |         |
| Caladenia alpina                 | CaAlp; |      |       | В             | FL;NM;              | 200      | 100      | 0    |          |       |        |             | 57              | 0.63                 | 80             | 0.63                   |                   |               |         |
| Caladenia angustata              | CaAng; |      |       | В             | CH;FL;NM;           | 200      | 100      | 0    |          |       |        |             | 12              | 0.33                 | 17             | 0.41                   |                   |               | Y       |
| Caladenia anthracina             | ArAn;  | CR   | е     | Р             |                     | 200      | 100      | 0    |          |       |        |             | 8               | 0.63                 | 13             | 0.54                   |                   |               | Y       |
| Caladenia atrata                 | CaAt;  |      |       | В             | FL;NS;              | 200      | 100      | 0    |          |       |        |             | 13              | 0.31                 | 21             | 0.33                   |                   |               | Y       |
| Caladenia atrochila              | CaAtc; | -    |       | В             | KI;                 | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 8              | 0.88                   |                   |               | Y       |
| Caladenia aurantiaca             | CaAur; | 0    | е     | Р             |                     | 200      | 200      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Caladenia australis              | CaAus; |      | е     | Р             |                     | 200      | 100      | 0    |          |       |        |             | 0               |                      | 0              |                        | Р                 |               |         |
| Caladenia brachyscapa            | CaBl;  | EX   | е     | Р             |                     | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Caladenia campbellii             | CaCpb; | CR   | е     | Р             |                     | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 6              | 0.33                   | Р                 |               | Y       |
| Caladenia caudata                | ArCau; | VU   | v     | Р             |                     | 200      | 100      | 0    |          |       |        |             | 29              | 0.38                 | 50             | 0.40                   |                   |               | Y       |
| Caladenia clavigera              | CaCl;  |      |       | В             | BL;NS;              | 200      | 100      | 0    |          |       |        |             | 30              | 0.37                 | 41             | 0.34                   |                   |               |         |
| Caladenia congesta               | CaCo;  | •    | е     | Р             |                     | 200      | 100      | 0    |          |       |        |             | 14              | 0.43                 | 18             | 0.50                   |                   |               |         |
| Caladenia cracens                | CaCr;  |      |       | В             | BL;CH;FL;WS<br>W;   | 200      | 100      | 0    |          |       |        |             | 25              | 0.56                 | 33             | 0.58                   |                   |               | Y       |
| Caladenia dienema                | CaDi;  | EN   | е     | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 10             | 0.80                   |                   |               | Y       |
| Caladenia dilatata               | CaDil; |      |       | В             | BL;CH;NM;           | 200      | 100      | 0    |          |       |        |             | 40              | 0.38                 | 53             | 0.32                   |                   |               |         |
| Caladenia echidnachila           | CaEc;  |      |       | В             | FL;                 | 200      | 100      | 0    |          |       |        |             | 23              | 0.30                 | 41             | 0.39                   |                   |               |         |
| Caladenia filamentosa            | CaFi;  |      | r     | Р             |                     | 200      | 100      | 0    |          |       |        |             | 10              | 0.10                 | 16             | 0.06                   | Р                 |               |         |
| Caladenia fuscata                | CaFu;  | 3    |       | В             | NM;NS;SR;           | 200      | 100      | 0    |          |       |        |             | 46              | 0.50                 | 76             | 0.54                   |                   |               |         |
| Caladenia gracilis               | CaGra; |      | 5<br> | В             | КІ;                 | 200      | 100      | 0    |          |       |        |             | 54              | 0.41                 | 77             | 0.45                   |                   |               |         |
| Caladenia helvina                | CaHe;  |      |       | В             | FL;SR;              | 200      | 100      | 0    |          |       |        |             | 11              | 0.64                 | 15             | 0.60                   |                   |               | Y       |

| Species                             | Code   | EPBC | TSPA | Model<br>type | Bioregions       | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------|--------|------|------|---------------|------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Caladenia lindleyana                | ArLi;  | CR   | е    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 4              | 0.25                   | Р                 |               | Y       |
| Caladenia mentiens                  | CaMe;  |      |      | В             | BL;NM;SR;        | 200      | 100      | 0    |          |       |        |             | 16              | 0.69                 | 21             | 0.62                   |                   |               |         |
| Caladenia pallida                   | ArPal; | CR   | е    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               | Y       |
| Caladenia patersonii                | ArPat; |      | v    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 15              | 0.20                 | 25             | 0.28                   |                   |               |         |
| Caladenia prolata                   | CaPr;  |      | е    | Р             |                  | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Caladenia pusilla                   | CaPu;  |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 18              | 0.61                 | 28             | 0.61                   |                   |               |         |
| Caladenia saggicola                 | ArSa;  | CR   | е    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 2               | 0.00                 | 2              | 0.00                   | Р                 |               | Y       |
| Caladenia sylvicola                 | CaSy;  | CR   | е    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               | Y       |
| Caladenia tonellii                  | СаТо;  | CR   | е    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 6               | 0.33                 | 8              | 0.50                   | Р                 |               | Y       |
| Caladenia transitoria               | CalTr; |      |      | В             | FL;NM;           | 200      | 100      | 0    |          |       |        |             | 24              | 0.63                 | 27             | 0.63                   |                   |               |         |
| Caladenia vulgaris                  | CaVu;  |      |      | В             | BL;FL;KI;NS;     | 0        | 0        | 0    |          |       |        |             | 25              | 0.40                 | 34             | 0.50                   |                   |               |         |
| Calandrinia calyptrata              | CalCa; |      |      | В             | BL;NM;WSW;       | 200      | 100      | 0    |          |       |        |             | 27              | 0.48                 | 37             | 0.59                   |                   |               |         |
| Calandrinia eremaea                 | CaEre; |      |      | В             | SE;              | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 4              | 0.50                   |                   |               |         |
| Calandrinia granulifera             | CaGr;  |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 9              | 1.00                   |                   |               |         |
| Caleana major                       | CaMa;  |      |      | В             | BL;CH;NM;NS<br>; | 200      | 100      | 0    |          |       |        |             | 43              | 0.42                 | 59             | 0.42                   |                   |               |         |
| Callitriche brachycarpa             | CaBr;  |      |      | В             | KI;NS;CH;SR;     | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 6              | 0.67                   |                   |               |         |
| Callitriche sonderi                 | CaSon; |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 2               | 0.00                 | 2              | 0.00                   | Р                 |               |         |
| Callitriche umbonata                | CaUm;  |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 4               | 0.00                 | 4              | 0.00                   | Р                 |               |         |
| Callitris oblonga subsp.<br>oblonga | CaOb;  | EN   | v    | Р             |                  | 200      | 500      | 0    | Y        |       |        |             | 15              | 0.20                 | 44             | 0.20                   | Р                 |               | Y       |
| Callitris rhomboidea                | CaRh;  |      |      | В             | BL;KI;NM;        | 200      | 100      | 0    |          |       |        |             | 44              | 0.48                 | 102            | 0.45                   |                   |               |         |
| Calocephalus citreus                | CaCi;  |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 9               | 0.00                 | 25             | 0.04                   | Р                 |               |         |
| Calocephalus lacteus                | CaLa;  |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 31              | 0.35                 | 56             | 0.39                   |                   |               |         |

| Species               | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Calochilus campestris | CaCpe; |      | e    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               | Y       |
| Calochilus herbaceus  | CaHer; |      |      | В             | BL;CH;NM;NS<br>;     | 200      | 100      | 0    |          |       |        |             | 57              | 0.72                 | 82             | 0.76                   |                   |               | Y       |
| Calochilus imberbis   | Calm;  |      |      | В             | BL;CH;FL;SE;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 7              | 0.43                   |                   |               |         |
| Calochilus paludosus  | CaPa;  |      |      | В             | BL;                  | 200      | 100      | 0    |          |       |        |             | 32              | 0.69                 | 47             | 0.74                   |                   |               |         |
| Calochlaena dubia     | CaDu;  |      |      | В             | CH;NM;WSW<br>;       | 200      | 100      | 0    |          |       |        |             | 54              | 0.44                 | 99             | 0.47                   |                   |               |         |
| Calorophus elongatus  | CaEl;  |      |      | В             | BL;NS;               | 200      | 100      | 0    |          |       | 5      |             | 55              | 0.73                 | 84             | 0.76                   |                   |               |         |
| Calorophus erostris   | CaEro; |      | -    | В             | NS;SR;               | 200      | 100      | 0    |          |       |        |             | 11              | 1.00                 | 16             | 1.00                   |                   |               | Y       |
| Calystegia marginata  | CaMar; |      | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 3              | 0.00                   | Р                 |               |         |
| Calystegia sepium     | CaSe;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 10             | 0.50                   |                   |               |         |
| Calystegia soldanella | CaSol; | •    | r    | Р             | КІ;                  | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 8              | 0.50                   |                   |               |         |
| Calytrix tetragona    | CaTet; |      | e    | В             | SR;                  | 200      | 100      | 0    |          |       |        |             | 28              | 0.68                 | 52             | 0.73                   |                   |               |         |
| Cardamine astoniae    | CaAs;  |      |      | В             | СН;                  | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Cardamine gunnii      | CaGun; |      |      | В             | FL;NM;WSW;           | 200      | 100      | 0    |          |       |        |             | 43              | 0.53                 | 56             | 0.59                   |                   |               |         |
| Cardamine lilacina    | CaLi;  |      |      | В             | KI;                  | 200      | 100      | 0    |          |       |        |             | 32              | 0.66                 | 42             | 0.62                   |                   |               |         |
| Cardamine papillata   | CaPap; |      |      | В             | KI;FL;WSW;N<br>M;BL; | 200      | 100      | 0    |          |       |        |             | 11              | 0.55                 | 14             | 0.64                   |                   |               |         |
| Cardamine paucijuga   | CaPau; |      |      | В             | FL;KI;NM;NS;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 24              | 0.79                 | 33             | 0.82                   |                   |               |         |
| Cardamine tenuifolia  | CaTe;  |      |      | В             | NM;NS;SR;            | 200      | 100      | 0    |          |       |        |             | 9               | 0.44                 | 10             | 0.50                   |                   |               |         |
| Carex barbata         | CaBa;  |      |      | В             | BL;CH;NS;SE;<br>SR;  | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               | Y       |
| Carex bichenoviana    | CaBi;  |      |      | В             | NS;CH;BL;SR;<br>SE;  | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |

| Species              | Code   | EPBC | TSPA | Model<br>type | Bioregions   | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------|--------|------|------|---------------|--------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Carex capillacea     | CaCap; |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 4              | 0.50                   |                   |               |         |
| Carex cataractae     | CaCat; |      |      | В             | NM;BL;SR;SE; | 200      | 100      | 0    |          |       |        |             | 6               | 0.17                 | 8              | 0.38                   | Р                 |               | Y       |
| Carex cephalotes     | CaCe;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Carex chlorantha     | CaCh;  |      |      | В             | FL;NM;BL;    | 200      | 100      | 0    |          |       |        |             | 7               | 0.43                 | 9              | 0.33                   |                   |               |         |
| Carex fascicularis   | CaFa;  |      |      | В             | BL;NM;SR;    | 200      | 100      | 0    |          |       |        |             | 30              | 0.37                 | 39             | 0.38                   |                   |               |         |
| Carex flaviformis    | CaFl;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 11              | 0.64                 | 14             | 0.71                   |                   |               |         |
| Carex gaudichaudiana | CaGa;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 94              | 0.49                 | 159            | 0.55                   |                   |               |         |
| Carex gunniana       | CaGu;  |      | r    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 29              | 0.31                 | 37             | 0.35                   |                   |               |         |
| Carex hypandra;      | CaHy;  |      | r    | Р             | CH;WSW;      | 200      | 100      | 0    | Y        |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Carex inversa        | Caln;  |      |      | В             | BL;KI;SR;    | 200      | 100      | 0    |          |       |        |             | 56              | 0.34                 | 86             | 0.33                   |                   |               |         |
| Carex iynx           | Caly;  |      |      | В             | SR;          | 200      | 100      | 0    |          |       |        |             | 80              | 0.16                 | 143            | 0.14                   |                   |               |         |
| Carex longebrachiata | CaLo;  |      | r    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 34              | 0.24                 | 60             | 0.28                   |                   |               |         |
| Carex polyantha      | CaPo;  |      |      | В             | BL;NM;WSW;   | 200      | 100      | 0    |          |       |        |             | 16              | 0.44                 | 23             | 0.43                   |                   |               |         |
| Carex pumila         | CaPum; |      |      | В             | BL;NM;       | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 17             | 0.76                   |                   |               |         |
| Carex raleighii      | CaRa;  |      |      | В             | NM;SR;       | 200      | 100      | 0    |          |       |        |             | 29              | 0.66                 | 50             | 0.74                   |                   |               |         |
| Carex tasmanica      | СаТа;  | VU   |      | Р             |              | 200      | 200      | 0    | Y        |       |        |             | 39              | 0.31                 | 71             | 0.27                   |                   |               |         |
| Carex tereticaulis   | CaTer; |      |      | В             | CH;NM;       | 200      | 100      | 0    |          |       |        |             | 22              | 0.23                 | 24             | 0.21                   |                   |               |         |
| Carpha alpina        | CarAl; | 9    |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 55              | 0.84                 | 122            | 0.89                   |                   |               | ,       |
| Carpha curvata       | CaCur; |      |      | В             | NS;SR;       | 200      | 100      | 0    |          |       |        |             | 18              | 0.94                 | 27             | 0.96                   |                   |               | Y       |
| Carpobrotus rossii   | CaRo;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 72              | 0.64                 | 142            | 0.72                   |                   |               |         |
| Cassinia rugata      | CaRu;  | VU   | е    | Р             |              | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 0.50                   | Р                 |               |         |
| Cassinia trinerva    | CasTr; | 9    |      | В             | SR;          | 200      | 100      | 0    |          |       |        |             | 20              | 0.45                 | 33             | 0.52                   |                   |               | ,,      |
| Cassytha glabella    | CaGl;  |      |      | В             | CH;NM;       | 200      | 100      | 0    |          |       |        |             | 101             | 0.64                 | 185            | 0.61                   |                   |               | j,      |
| Cassytha pedicellosa | CaPe;  |      |      | В             | FL;SE;       | 200      | 100      | 0    |          |       |        |             | 7               | 0.71                 | 11             | 0.73                   |                   |               | Y       |

| Species                                  | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Caustis pentandra                        | CaPen; |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 11              | 0.91                 | 46             | 0.74                   |                   |               |         |
| Cenarrhenes nitida                       | CeNi;  |      |      | В             | NM;SE;              | 200      | 100      | 0    |          |       |        |             | 105             | 0.78                 | 271            | 0.81                   |                   |               | Y       |
| Centella cordifolia                      | CeCo;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 81              | 0.48                 | 134            | 0.51                   |                   |               |         |
| Centipeda cunninghamii                   | CeCu;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 7               | 0.29                 | 8              | 0.38                   |                   |               |         |
| Centipeda elatinoides                    | CeEl;  |      |      | В             | NS;CH;BL;SR;<br>SE; | 200      | 100      | 0    |          |       |        |             | 33              | 0.24                 | 41             | 0.22                   |                   |               |         |
| Centrolepis aristata                     | CeAr;  |      |      | В             | BL;CH;KI;NS;S<br>R; | 200      | 100      | 0    |          |       |        |             | 45              | 0.40                 | 70             | 0.40                   |                   |               |         |
| Centrolepis fascicularis                 | CeFa;  |      |      | В             | BL;SH;NS;           | 200      | 100      | 0    |          |       |        |             | 36              | 0.58                 | 44             | 0.57                   |                   |               |         |
| Centrolepis glabra                       | CeGl;  |      |      | В             | WSW;CH;NM<br>;SE;   | 200      | 100      | 0    |          |       |        |             | 4               | 0.25                 | 4              | 0.25                   | Р                 |               |         |
| Centrolepis monogyna                     | CeMo;  |      |      | В             | KI;NS;BL;SE;        | 200      | 100      | 0    |          |       |        |             | 51              | 0.88                 | 89             | 0.87                   |                   |               | Y       |
| Centrolepis muscoides                    | CeMu;  | ā    | 0    | В             | SE;                 | 200      | 100      | 0    |          |       |        |             | 6               | 0.83                 | 7              | 0.86                   |                   |               | Y       |
| Centrolepis pedderensis                  | CePe;  | EN   | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 4              | 1.00                   |                   |               | Y       |
| Centrolepis polygyna                     | CePo;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 14              | 0.86                 | 19             | 0.79                   |                   |               |         |
| Centrolepis strigosa<br>subsp. pulvinata | CeStP; |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 4              | 0.75                   |                   |               | Y       |
| Centrolepis strigosa<br>subsp. strigosa  | CeSS;  |      |      | В             | CH;NS;              | 200      | 100      | 0    |          |       |        |             | 88              | 0.49                 | 139            | 0.50                   |                   |               |         |
| Chamaescilla corymbosa<br>var corymbosa  | ChCC;  |      |      | В             | BL;KI;NM;NS;<br>SR; | 200      | 100      | 0    |          |       |        |             | 23              | 0.48                 | 31             | 0.45                   |                   |               |         |
| Chamaesyce drummondii                    | ChDr;  |      |      | В             | FL;SE;              | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Cheilanthes<br>austrotenuifolia          | ChAu;  |      |      | В             | CH;SR;              | 200      | 100      | 0    |          |       |        |             | 63              | 0.44                 | 122            | 0.46                   |                   |               |         |
| Cheilanthes distans                      | ChDi;  |      | e    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Cheilanthes sieberi subsp.<br>sieberi    | ChSS;  |      |      | В             | CH;NM;NS;SR<br>;    | 200      | 100      | 0    |          |       |        |             | 23              | 0.26                 | 28             | 0.29                   |                   |               |         |

| Species                                           | Code   | EPBC | TSPA | Model<br>type | Bioregions       | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------------|--------|------|------|---------------|------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Chiloglottis gunnii                               | ChGu;  |      |      | В             | FL;NM;           | 200      | 100      | 0    |          |       |        |             | 41              | 0.66                 | 56             | 0.64                   |                   |               | Y       |
| Chiloglottis trapeziformis                        | ChTr;  |      | е    | Р             |                  | 200      | 500      | 0    |          |       |        |             | 5               | 0.60                 | 5              | 0.60                   |                   |               |         |
| Chiloglottis triceratops                          | ChTri; |      |      | В             | BL;FL;WSW;       | 200      | 100      | 0    |          |       |        |             | 46              | 0.39                 | 63             | 0.40                   |                   |               | Y       |
| Chiloglottis valida                               | ChVa;  |      |      | Р             |                  | 200      | 100      | 0    |          |       |        |             | 2               | 0.00                 | 3              | 0.00                   | Р                 |               |         |
| Chordifex hookeri                                 | ChHo;  |      |      | В             | NS;              | 200      | 100      | 0    |          |       |        |             | 48              | 0.79                 | 97             | 0.81                   |                   |               | Y       |
| Chordifex monocephalus                            | CoMon; |      |      | В             | BL;              | 200      | 100      | 0    |          |       |        |             | 43              | 0.84                 | 73             | 0.82                   |                   |               | Y       |
| Chorizandra australis                             | ChoAu; |      |      | В             | CH;              | 200      | 100      | 0    |          |       |        |             | 16              | 0.56                 | 22             | 0.59                   |                   |               |         |
| Chorizandra enodis                                | ChEn;  |      | е    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 5               | 0.00                 | 8              | 0.00                   | Р                 |               |         |
| Chrysocephalum<br>apiculatum                      | ChAp;  |      |      | В             | NS;              | 200      | 100      | 0    |          |       |        |             | 99              | 0.41                 | 198            | 0.41                   |                   |               |         |
| Chrysocephalum baxteri                            | ChBa;  |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 5               | 0.20                 | 9              | 0.11                   | Р                 |               |         |
| Chrysocephalum<br>semipapposum                    | ChSe;  |      |      | В             | BL;CH;SR;        | 200      | 100      | 0    |          |       |        |             | 37              | 0.24                 | 58             | 0.19                   |                   |               |         |
| Clematis gentianoides                             | ClGe;  |      |      | В             | BL;CH;SR;        | 200      | 100      | 0    |          |       |        | -           | 35              | 0.66                 | 67             | 0.54                   |                   |               | Y       |
| Colobanthus affinis                               | CoAf;  |      |      | В             | NS;SE;           | 200      | 100      | 0    |          |       |        |             | 10              | 0.90                 | 10             | 0.90                   |                   |               |         |
| Colobanthus apetalus var<br>apetalus              | CoApA; |      |      | В             | CH;NM;NS;SE<br>; | 200      | 100      | 0    |          |       |        |             | 36              | 0.67                 | 52             | 0.73                   |                   |               |         |
| Colobanthus curtisiae                             | CoCu;  | VU   | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 38              | 0.29                 | 71             | 0.21                   |                   |               |         |
| Colobanthus pulvinata                             | CoPuL; |      | r    | Р             |                  | 200      | 200      | 0    |          |       |        |             | 3               | 1.00                 | 3              | 1.00                   |                   |               |         |
| Comesperma calymega                               | CoCa;  |      |      | В             | BL;CH;NS;        | 200      | 100      | 0    |          |       |        |             | 35              | 0.74                 | 46             | 0.80                   |                   |               |         |
| Comesperma defoliatum                             | CoDe;  |      | r    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 8               | 0.88                 | 8              | 0.88                   |                   |               |         |
| Comesperma ericinum                               | CoEr;  |      |      | В             | NS;SR;           | 200      | 100      | 0    |          |       |        |             | 12              | 0.67                 | 14             | 0.64                   |                   |               |         |
| Conospermum hookeri                               | СоНо;  | VU   | v    | Р             |                  | 200      | 100      | 0    |          |       |        |             | 15              | 0.47                 | 33             | 0.52                   |                   |               | Y       |
| Convolvulus angustissimus<br>subsp. angustissimus | CoAnA; |      |      | В             | BL;CH;NS;SR;     | 200      | 100      | 0    |          |       |        |             | 65              | 0.25                 | 131            | 0.19                   |                   |               |         |

| Species                               | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Coprosma nitida                       | CoNi;  |      |      | В             | FL;NM;              | 200      | 100      | 0    |          |       |        |             | 121             | 0.74                 | 255            | 0.76                   |                   |               |         |
| Correa lawrenceana var<br>lawrenceana | CoLL;  |      |      | В             | FL;NM;              | 200      | 100      | 0    |          |       |        |             | 56              | 0.64                 | 122            | 0.66                   |                   |               | Y       |
| Corunastylis archeri                  | CoAr;  |      |      | В             | BL;CH;KI;NM;<br>NS; | 200      | 100      | 0    |          |       |        |             | 28              | 0.50                 | 36             | 0.47                   |                   |               |         |
| Corunastylis<br>brachystachya         | CoBr;  | EN   | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 8              | 0.88                   |                   |               | Y       |
| Corunastylis despectans               | CoDes; |      |      | В             | FL;NS;              | 200      | 100      | 0    |          |       |        |             | 20              | 0.45                 | 27             | 0.44                   |                   |               |         |
| Corunastylis morrisii                 | CoMo;  |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 6               | 0.67                 | 6              | 0.67                   |                   |               |         |
| Corunastylis nuda                     | CoNu;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 18              | 0.44                 | 24             | 0.42                   |                   |               |         |
| Corunastylis nudiscapa                | CoNui; |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        | ōı          | 2               | 0.50                 | 5              | 0.20                   | Р                 |               | Y       |
| Corunastylis pumila                   | CoPum; |      |      | В             | SR;                 | 200      | 100      | 0    |          |       |        |             | 12              | 0.75                 | 14             | 0.79                   |                   |               |         |
| Corunastylis tasmanica                | CoTas; |      |      | В             | BL;FL;KI;NS;S<br>R; | 200      | 100      | 0    |          |       |        |             | 26              | 0.35                 | 31             | 0.32                   |                   |               | Y       |
| Corybas aconitiflorus                 | CoAc;  |      |      | В             | WSW;CH;NM<br>;SR;   | 200      | 100      | 0    |          |       |        |             | 34              | 0.68                 | 45             | 0.76                   |                   |               |         |
| Corybas diemenicus                    | CoDi;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 68              | 0.65                 | 100            | 0.61                   |                   |               |         |
| Corybas fimbriatus                    | CoFim; |      |      | В             | KI;NS;NM;BL;        | 200      | 100      | 0    |          |       |        |             | 16              | 0.50                 | 21             | 0.48                   |                   |               |         |
| Corybas fordhamii                     | CoFo;  |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Corybas unguiculatus                  | CoUn;  |      |      | В             | NS;NM;BL;SR;        | 200      | 100      | 0    |          |       |        |             | 19              | 0.58                 | 23             | 0.57                   |                   |               |         |
| Cotula alpina                         | CoAl;  |      |      | В             | KI;NM;              | 200      | 100      | 0    |          |       |        |             | 83              | 0.57                 | 165            | 0.64                   |                   |               |         |
| Cotula vulgaris var.<br>australasica  | CoVu;  |      | r    | Р             | KI;SE;              | 200      | 500      | 0    |          |       |        |             | 11              | 0.73                 | 17             | 0.76                   |                   |               |         |
| Craspedia glabrata                    | CrGl;  |      |      | В             | BL;SR;              | 200      | 100      | 0    |          |       |        |             | 14              | 0.79                 | 16             | 0.75                   |                   |               | Y       |
| Craspedia macrocephala                | CrMa;  |      |      | В             | BL;NS;SE;SR;        | 200      | 100      | 0    |          |       |        |             | 22              | 0.86                 | 34             | 0.88                   |                   |               | Y       |
| Craspedia paludicola                  | CrPa;  |      |      | В             | NM;SE;              | 200      | 100      | 0    |          |       |        |             | 6               | 0.67                 | 8              | 0.75                   |                   |               |         |

| Species                               | Code   | EPBC | TSPA | Model<br>type | Bioregions        | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------|--------|------|------|---------------|-------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Craspedia preminghana                 | CrPr;  | EN   | e    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               | Y       |
| Crassula decumbens var.<br>decumbens  | CrDD;  |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 33              | 0.48                 | 42             | 0.50                   |                   |               |         |
| Crassula exserta                      | CrEx;  |      |      | В             | CH;FL;            | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Crassula helmsii                      | CrHe;  |      |      | В             | BL;NM;NS;         | 200      | 100      | 0    |          |       |        |             | 49              | 0.47                 | 64             | 0.48                   |                   |               |         |
| Crassula moschata                     | CrMo;  |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 4              | 0.50                   |                   |               |         |
| Crassula peduncularis                 | CrPe;  |      |      | В             | BL;KI;NM;WS<br>W; | 200      | 100      | 0    |          |       |        |             | 17              | 0.53                 | 17             | 0.53                   |                   |               |         |
| Cryptandra amara                      | CrAm;  |      | e    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 16              | 0.31                 | 27             | 0.37                   |                   |               |         |
| Cryptostylis leptochila               | CrLe;  |      | e    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 6              | 0.67                   | Р                 |               |         |
| Cryptostylis subulata                 | CrSu;  |      |      | В             | CH;               | 200      | 100      | 0    |          |       |        |             | 52              | 0.62                 | 76             | 0.67                   |                   |               |         |
| Ctenopteris heterophylla              | CtHe;  |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 97              | 0.73                 | 185            | 0.74                   |                   |               |         |
| Cullen microcephalum                  | CuMi;  |      | r    | Р             | KI;WSW;           | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 5              | 1.00                   |                   |               |         |
| Cuscuta tasmanica                     | CuTa;  |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 6              | 0.67                   |                   |               |         |
| Cyathea australis subsp.<br>australis | СуАА;  |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 70              | 0.59                 | 146            | 0.61                   |                   |               |         |
| Cyathea cunninghamii                  | CyCu;  |      | e    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 17              | 0.76                 | 27             | 0.74                   |                   |               |         |
| Cyathea Xmarcescens                   | СүХ;   |      | e    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 8              | 0.50                   | Р                 |               |         |
| Cyathodes glauca                      | CyGl;  |      |      | В             | FL;KI;NM;         | 200      | 100      | 0    |          |       |        |             | 105             | 0.75                 | 243            | 0.67                   |                   |               | Y       |
| Cyathodes platystoma                  | CyPl;  |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 8               | 0.88                 | 21             | 0.76                   |                   |               | Y       |
| Cyathodes straminea                   | CySt;  |      |      | В             | NS;               | 200      | 100      | 0    |          |       |        |             | 32              | 0.97                 | 52             | 0.98                   |                   |               | Y       |
| Cymbonotus preissianus                | CyPr;  |      |      | В             | CH;KI;NM;         | 200      | 100      | 0    |          |       |        |             | 24              | 0.42                 | 33             | 0.45                   |                   |               |         |
| Cynoglossum australe                  | CyAu;  |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 40              | 0.32                 | 91             | 0.32                   |                   |               |         |
| Cynoglossum suaveolens                | CySua; |      |      | В             | BL;CH;FL;NS;      | 200      | 100      | 0    |          |       |        |             | 74              | 0.30                 | 132            | 0.29                   |                   |               |         |

| Species                                  | Code   | EPBC | TSPA | Model<br>type | Bioregions              | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------|--------|------|------|---------------|-------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Cyperus gunnii                           | CyGu;  |      |      | В             | NS;FL;NM;BL;<br>SE;     | 200      | 100      | 0    |          |       |        |             | 14              | 0.07                 | 15             | 0.07                   | Р                 |               |         |
| Cyperus lucidus                          | CyLu;  |      |      | В             | BL;CH;KI;NM;<br>SE;     | 200      | 100      | 0    |          |       |        |             | 34              | 0.24                 | 48             | 0.25                   |                   |               |         |
| Cyphanthera tasmanica                    | СуТа;  |      | r    | Р             |                         | 200      | 500      | 0    | Y        |       |        |             | 8               | 0.50                 | 19             | 0.63                   |                   |               | Y       |
| Cyrtostylis robusta                      | CyRo;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 25              | 0.72                 | 38             | 0.61                   |                   |               |         |
| Cystopteris tasmanica                    | CyTas; | 2    |      | В             | BL;SE;                  | 200      | 100      | 0    |          |       |        |             | 11              | 0.73                 | 12             | 0.75                   |                   |               |         |
| Damasonium minus                         | DaMi;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Dampiera stricta                         | DaSt;  |      |      | В             | NS;                     | 200      | 100      | 0    |          |       |        |             | 19              | 0.68                 | 27             | 0.67                   |                   |               |         |
| Daviesia latifolia                       | DaLa;  |      |      | В             | CH;                     | 200      | 100      | 0    |          |       |        |             | 99              | 0.44                 | 177            | 0.46                   |                   |               |         |
| Daviesia sejugata                        | DaSe;  |      |      | В             | BL;KI;NM;NS;<br>SR;WSW; | 200      | 100      | 0    |          |       |        |             | 18              | 0.06                 | 23             | 0.09                   | Р                 |               |         |
| Daviesia ulicifolia subsp.<br>ruscifolia | DaUR;  |      |      | В             | BL;FL;NS;SR;            | 200      | 100      | 0    |          |       |        |             | 17              | 0.29                 | 19             | 0.32                   |                   |               |         |
| Daviesia ulicifolia subsp.<br>ulicifolia | DaUU;  |      |      | В             | FL;NS;SR;               | 200      | 100      | 0    |          |       |        |             | 32              | 0.81                 | 54             | 0.85                   |                   |               |         |
| Deschampsia gracillima                   | DeGr;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   |               |         |
| Desmodium gunnii                         | DeGu;  |      | v    | Р             |                         | 200      | 500      | 0    |          |       |        |             | 22              | 0.41                 | 39             | 0.44                   |                   |               |         |
| Desmodium varians                        | DeVa;  |      | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 5               | 0.20                 | 11             | 0.18                   | Р                 |               |         |
| Deyeuxia apsleyensis                     | DeAp;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Deyeuxia brachyathera                    | DeBr;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 4              | 1.00                   |                   |               |         |
| Deyeuxia contracta                       | DeCo;  |      |      | В             | KI;WSW;                 | 200      | 100      | 0    |          |       |        |             | 44              | 0.59                 | 54             | 0.61                   |                   |               |         |
| Deyeuxia decipiens                       | DeDec; |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               |         |
| Deyeuxia densa                           | DeDen; |      | r    | Р             | KI;                     | 200      | 100      | 0    |          |       |        |             | 35              | 0.71                 | 43             | 0.74                   |                   |               |         |
| Deyeuxia frigida                         | DeFr;  |      |      | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 21              | 0.57                 | 26             | 0.62                   |                   |               |         |
| Deyeuxia minor                           | DeMi;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 14              | 0.79                 | 16             | 0.75                   |                   |               |         |

| Species                                          | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Deyeuxia rodwayi                                 | DeRo;  |      |      | В             | NS;FL;WSW;B<br>N;BL; | 200      | 100      | 0    |          |       |        |             | 25              | 0.76                 | 34             | 0.76                   |                   |               |         |
| Deyeuxia scaberula                               | DeSc;  |      |      | В             | NS;SE;SR;            | 200      | 100      | 0    |          |       |        |             | 9               | 1.00                 | 11             | 1.00                   |                   |               |         |
| Dianella amoena                                  | DiAm;  | EN   | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 29              | 0.17                 | 65             | 0.22                   | Р                 |               |         |
| Dianella brevicaulis                             | DiBr;  |      |      | В             | KI;NS;WSW;B<br>L;SR; | 200      | 100      | 0    |          |       |        |             | 31              | 0.29                 | 51             | 0.29                   |                   |               |         |
| Dichelachne crinita                              | DiCr;  |      |      | В             | NS;BL;               | 200      | 100      | 0    |          |       |        |             | 98              | 0.38                 | 171            | 0.36                   |                   |               |         |
| Dichelachne micrantha                            | DiMi;  |      |      | В             | FL;                  | 200      | 100      | 0    |          |       |        |             | 33              | 0.82                 | 48             | 0.83                   |                   |               |         |
| Dichelachne sieberiana                           | DiSi;  |      |      | В             | BL;                  | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 5              | 0.60                   |                   |               |         |
| Dichosciadium<br>ranunculaceum var<br>tasmanicum | DiRT;  |      |      | В             | SR;SE;               | 200      | 100      | 0    |          |       |        |             | 13              | 0.92                 | 15             | 0.93                   |                   |               | Y       |
| Dillwynia cinerascens                            | DiCi;  |      |      | В             | NS;WSW;CH;<br>SR;    | 200      | 100      | 0    |          |       |        |             | 51              | 0.29                 | 80             | 0.27                   |                   |               |         |
| Diplarrena latifolia                             | DiLat; |      |      | В             | KI;FL;BL;SE;         | 200      | 100      | 0    |          |       |        |             | 72              | 0.78                 | 123            | 0.82                   |                   |               | Y       |
| Diplarrena moraea                                | DipMo; |      |      | В             | KI;                  | 200      | 100      | 0    |          |       |        |             | 213             | 0.47                 | 469            | 0.46                   |                   |               |         |
| Diplaspis cordifolia                             | DiCo;  |      |      | В             | NS;                  | 200      | 100      | 0    |          |       |        |             | 29              | 0.97                 | 49             | 0.98                   |                   |               | Y       |
| Diplazium australe                               | DiAu;  | e    | e    | В             | CH;SR;               | 200      | 100      | 0    |          |       |        |             | 27              | 0.74                 | 33             | 0.76                   |                   | 2             |         |
| Discaria pubescens                               | DiPu;  |      | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 13              | 0.00                 | 29             | 0.03                   | Р                 |               |         |
| Diselma archeri                                  | DiAr;  |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 31              | 0.84                 | 64             | 0.89                   |                   |               | Y       |
| Distichlis distichophylla                        | DiDi;  |      | e    | В             | NS;CH;BL;            | 200      | 100      | 0    |          |       |        |             | 70              | 0.39                 | 108            | 0.44                   |                   |               |         |
| Diuris chryseopsis                               | DiCh;  |      |      | В             | KI;SR;               | 200      | 100      | 0    |          |       |        |             | 34              | 0.44                 | 44             | 0.41                   |                   |               |         |
| Diuris lanceolata                                | DiLan; | EN   | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 5              | 0.60                   | Р                 |               | Y       |
| Diuris monticola                                 | DiMo;  |      |      | В             | NS;WSW;SE;           | 200      | 100      | 0    |          |       |        |             | 19              | 0.42                 | 24             | 0.50                   |                   |               |         |
| Diuris orientis                                  | DiOr;  |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 24              | 0.42                 | 46             | 0.46                   |                   |               |         |

| Species                                  | Code   | EPBC | TSPA | Model<br>type | Bioregions             | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------|--------|------|------|---------------|------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Diuris palustris                         | DiPa;  |      | е    | Р             | BL;SR;                 | 200      | 100      | 0    |          |       |        |             | 15              | 0.47                 | 20             | 0.60                   |                   |               |         |
| Diuris pardina                           | DiPar; |      |      | В             | SR;                    | 200      | 100      | 0    |          |       |        |             | 41              | 0.37                 | 75             | 0.40                   |                   | 2             |         |
| Diuris sulphurea                         | DiSu;  |      |      | В             | KI;SR;                 | 200      | 100      | 0    |          |       |        |             | 59              | 0.47                 | 95             | 0.44                   |                   |               |         |
| Dockrillia striolata subsp.<br>striolata | DoSS;  |      |      | В             | SE;                    | 200      | 100      | 0    |          |       |        |             | 5               | 0.80                 | 6              | 0.67                   |                   |               |         |
| Dodonaea filiformis                      | DoFi;  |      |      | В             | FL;WSW;CH;             | 200      | 100      | 0    |          |       |        |             | 20              | 0.50                 | 39             | 0.44                   |                   |               | Y       |
| Donatia novae-zelandiae                  | DoNz;  |      |      | В             | NS;                    | 200      | 100      | 0    |          |       |        |             | 26              | 1.00                 | 46             | 1.00                   |                   |               |         |
| Doodia australis                         | DoAu;  |      | 0    | В             | NS;                    | 200      | 100      | 0    |          |       |        |             | 13              | 0.85                 | 15             | 0.87                   |                   |               |         |
| Doodia caudata                           | DoCa;  |      | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 4               | 0.25                 | 10             | 0.40                   | Р                 |               |         |
| Dracophyllum milliganii                  | DrMi;  |      |      | В             | NS;                    | 200      | 100      | 0    |          |       |        |             | 17              | 1.00                 | 34             | 1.00                   |                   |               | Y       |
| Dracophyllum minimum                     | DrMin; |      |      | В             | CH;SE;                 | 200      | 100      | 0    |          |       |        |             | 15              | 0.93                 | 24             | 0.96                   |                   |               | Y       |
| Drosera arcturi                          | DrAc;  |      |      | В             | BL;NS;                 | 200      | 100      | 0    |          |       |        |             | 45              | 0.93                 | 85             | 0.96                   |                   |               |         |
| Drosera binata                           | DrBi;  |      | 0    | В             | NM;NS;                 | 200      | 100      | 0    |          |       |        |             | 52              | 0.75                 | 83             | 0.81                   |                   |               |         |
| Drosera glanduligera                     | DrGl;  |      | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 5               | 0.80                 | 9              | 0.89                   |                   |               |         |
| Drosera macrantha                        | DrMa;  |      |      | В             | NS;                    | 200      | 100      | 0    |          |       |        |             | 14              | 0.50                 | 18             | 0.56                   |                   |               |         |
| Drosera peltata                          | DrPP;  |      |      | В             | BL;FL;NS;SR;           | 200      | 100      | 0    |          |       |        |             | 120             | 0.60                 | 241            | 0.55                   |                   |               |         |
| Drosera spatulata                        | DrSp;  |      |      | В             | KI;FL;BL;              | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 11             | 0.82                   |                   |               |         |
| Drosera spatulata var<br>spatulata       | DrSp;  |      |      | В             | BL;FL;KI;              | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 11             | 0.82                   |                   |               |         |
| Dryopoa dives                            | DrDi;  |      | r    | Р             |                        | 200      | 500      | 0    |          |       |        |             | 2               | 1.00                 | 9              | 1.00                   |                   |               |         |
| Einadia nutans subsp.<br>nutans          | EiNN;  |      |      | В             | KI;NS;FL;CH;B<br>L;    | 200      | 100      | 0    |          |       |        |             | 46              | 0.30                 | 84             | 0.27                   |                   |               |         |
| Elaeocarpus reticulatus                  | ElRe;  |      | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 24             | 0.63                   |                   |               |         |
| Elatine gratioloides                     | ElGr;  |      |      | В             | KI;FL;NM;BL;S<br>R;SE; | 200      | 100      | 0    |          |       |        |             | 10              | 0.30                 | 13             | 0.31                   |                   |               |         |

| Species               | Code   | EPBC | TSPA | Model<br>type | Bioregions                 | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------|--------|------|------|---------------|----------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Eleocharis acuta      | ElAc;  |      |      | В             | NS;                        | 200      | 100      | 0    |          |       |        |             | 116             | 0.36                 | 182            | 0.29                   |                   |               |         |
| Eleocharis gracilis   | ElGra; |      |      | В             | NS;FL;NM;                  | 200      | 100      | 0    |          |       |        |             | 27              | 0.59                 | 38             | 0.53                   |                   |               |         |
| Eleocharis pusilla    | ElPu;  |      |      | В             | KI;WSW;CH;N<br>M;BL;SR;SE; | 200      | 100      | 0    |          |       |        |             | 22              | 0.32                 | 30             | 0.37                   |                   |               |         |
| Eleocharis sphacelata | ElSp;  |      |      | В             | KI;NM;BL;                  | 200      | 100      | 0    |          |       |        |             | 53              | 0.36                 | 71             | 0.35                   |                   |               |         |
| Epacris acuminata     | EpAc;  | VU   |      | Р             |                            | 200      | 500      | 0    | Y        |       |        |             | 36              | 0.36                 | 75             | 0.35                   |                   |               | Y       |
| Epacris apsleyensis   | EpAps; | EN   | е    | Р             |                            | 200      | 500      | 0    |          |       |        |             | 6               | 0.33                 | 18             | 0.33                   | Р                 |               | Y       |
| Epacris barbata       | EpBa;  | EN   | е    | Р             |                            | 200      | 500      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |
| Epacris corymbiflora  | EpCo;  | 0    |      | В             | CH;NS;                     | 200      | 100      | 0    |          |       |        |             | 22              | 0.91                 | 45             | 0.96                   |                   |               | Y       |
| Epacris curtisiae     | EpCu;  |      | r    | Р             |                            | 200      | 100      | 0    |          |       |        |             | 8               | 0.75                 | 20             | 0.90                   |                   |               | Y       |
| Epacris exserta       | EpEx;  | EN   | е    | Р             |                            | 200      | 500      | 0    | Y        |       |        |             | 4               | 0.50                 | 9              | 0.44                   | Р                 |               | Y       |
| Epacris franklinii    | EpFr;  | ō    |      | Р             | BL;CH;NM;                  | 200      | 100      | 0    | ō        |       |        |             | 13              | 0.54                 | 33             | 0.55                   |                   |               | Y       |
| Epacris glabella      | EpGl;  | EN   | е    | Р             |                            | 200      | 500      | 0    |          |       |        |             | 2               | 1.00                 | 6              | 1.00                   |                   |               | Y       |
| Epacris grandis       | EpGr;  | EN   | е    | Р             |                            | 200      | 500      | 0    | Y        |       |        |             | 2               | 0.50                 | 5              | 0.80                   | Р                 |               | Y       |
| Epacris graniticola   | EpGra; | CR   | v    | Р             |                            | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 9              | 1.00                   |                   |               | Y       |
| Epacris limbata       | EpLi;  | CR   | е    | Р             |                            | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               | Y       |
| Epacris moscaliana    | EpMo;  | EN   | r    | Р             |                            | 200      | 100      | 0    |          |       |        |             | 12              | 0.50                 | 33             | 0.52                   |                   |               | Y       |
| Epacris myrtifolia    | EpMy;  |      |      | В             | BL;                        | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 13             | 0.85                   |                   |               | Y       |
| Epacris navicularis   | EpNa;  |      |      | В             | NS;SE;                     | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Epacris paludosa      | EpPa;  |      |      | В             | NS;                        | 200      | 100      | 0    |          |       |        | -           | 7               | 0.43                 | 10             | 0.60                   |                   |               |         |
| Epacris petrophila    | EpPe;  |      |      | В             | NS;SE;SR;                  | 200      | 100      | 0    |          |       |        |             | 15              | 0.60                 | 23             | 0.65                   |                   |               |         |
| Epacris stuartii      | EpSt;  | CR   | е    | Р             |                            | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   |               | Y       |
| Epacris tasmanica     | ЕраТа; |      |      | В             | CH;FL;NM;                  | 200      | 100      | 0    |          |       |        |             | 34              | 0.29                 | 68             | 0.35                   |                   |               | Y       |
| Epacris virgata       | EpVi;  | EN   | pv   | Р             | FL;SR;                     | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               | Y       |

| Species                           | Code   | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------|--------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Epacris virgata<br>(Beaconsfield) | EpVB;  | EN   | рv   | Р             | FL;SR;                               | 200      | 100      | 0    |          |       |        |             | 5               | 0.80                 | 15             | 0.87                   |                   |               | Y       |
| Epacris virgata (Kettering)       | EpVK;  |      | pv   | Р             | FL;SR;                               | 200      | 100      | 0    |          |       |        |             | 15              | 0.33                 | 32             | 0.31                   |                   |               | Y       |
| Epilobium curtisiae               | EpiCu; |      |      | В             | SR;                                  | 200      | 100      | 0    |          |       |        |             | 8               | 0.50                 | 8              | 0.50                   |                   |               |         |
| Epilobium gunnianum               | EpGu;  |      |      | В             | FL;KI;NM;                            | 200      | 100      | 0    |          |       |        |             | 22              | 0.50                 | 36             | 0.56                   |                   |               |         |
| Epilobium hirtigerum              | EpHi;  |      |      | В             | CH;NS;NM;SE<br>;                     | 200      | 100      | 0    |          |       |        |             | 13              | 0.15                 | 13             | 0.15                   |                   |               |         |
| Epilobium pallidiflorum           | EpPal; |      | r    | Р             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 30              | 0.17                 | 44             | 0.11                   |                   |               |         |
| Epilobium perpusillum             | EpPer; |      |      | В             | NS;WSW;                              | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 6              | 0.83                   |                   |               | Y       |
| Epilobium sarmentaceum            | EpSa;  |      |      | В             | BL;FL;NM;NS;<br>SE;WSW;              | 200      | 100      | 0    |          |       |        |             | 35              | 0.69                 | 40             | 0.70                   |                   |               |         |
| Epilobium tasmanicum              | EpiTa; |      |      | В             | NS;WSW;BL;S<br>R;SE;                 | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 12             | 0.83                   |                   |               |         |
| Epilobium willisii                | EpWi;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 7               | 0.86                 | 10             | 0.90                   |                   |               |         |
| Eragrostis brownii                | ErBr;  |      |      | В             | BL;NM;NS;                            | 200      | 100      | 0    |          |       |        |             | 22              | 0.18                 | 27             | 0.19                   |                   |               |         |
| Erigeron stellatus                | ErSt;  |      |      | В             | BL;NS;SE;                            | 200      | 100      | 0    |          |       |        |             | 39              | 0.95                 | 83             | 0.96                   |                   |               | Y       |
| Eryngium ovinum                   | ErOv;  |      | v    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 14              | 0.14                 | 26             | 0.12                   | Р                 |               |         |
| Eryngium vesiculosum              | ErVe;  |      |      | В             | CH;BL;                               | 200      | 100      | 0    |          |       |        |             | 63              | 0.48                 | 97             | 0.49                   |                   |               |         |
| Eucalyptus archeri                | EuAr;  |      |      | В             | NM;NS;SE;                            | 200      | 100      | 0    |          |       |        |             | 13              | 0.92                 | 24             | 0.92                   |                   |               | Y       |
| Eucalyptus barberi                | EuBa;  |      | r    | Р             |                                      | 200      | 500      | 0    |          |       |        |             | 7               | 0.29                 | 24             | 0.63                   |                   |               | Y       |
| Eucalyptus brookeriana            | EuBr;  |      |      | В             | CH;NM;                               | 200      | 100      | 0    |          |       |        |             | 67              | 0.60                 | 142            | 0.59                   |                   |               | Y       |
| Eucalyptus coccifera              | EuCoc; |      |      | В             | NM;O                                 | 200      | 200      | 0    |          |       |        |             | 76              | 0.75                 | 176            | 0.80                   |                   |               | Y       |
| Eucalyptus cordata                | EuCo;  |      |      | Р             | CH;                                  | 200      | 100      | 0    |          |       |        |             | 24              | 0.46                 | 52             | 0.52                   |                   |               | Y       |

| Species                                        | Code  | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------------|-------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Eucalyptus cordata subsp.<br>cordata           | EuCo; |      |      | Р             | СН;        | 200      | 100      | 0    |          |       |        |             | 24              | 0.46                 | 52             | 0.52                   |                   |               | Y       |
| Eucalyptus cordata subsp.<br>quadrangulosa     | EuCo; |      |      | Р             | СН;        | 200      | 100      | 0    |          |       |        |             | 24              | 0.46                 | 52             | 0.52                   |                   |               | Y       |
| Eucalyptus dalrympleana<br>subsp. dalrympleana | EuDD; |      |      | В             | FL;KI;WSW; | 200      | 100      | 0    |          |       |        |             | 123             | 0.41                 | 338            | 0.45                   |                   |               |         |
| Eucalyptus delegatensis<br>subsp. tasmaniensis | EuDT; |      |      | В             | KI;FL;     | 200      | 200      | 0    |          |       |        |             | 191             | 0.58                 | 581            | 0.59                   |                   |               | Y       |
| Eucalyptus globulus                            | EuGG; |      |      | В             | CH;        | 200      | 200      | 0    |          |       |        |             | 156             | 0.47                 | 377            | 0.45                   |                   |               |         |
| Eucalyptus globulus<br>subsp. pseudoglobulus   | EuGP; |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   |               |         |
| Eucalyptus gunnii                              | EuGu; |      |      | В             | NM;        | 200      | 100      | 0    |          |       |        |             | 51              | 0.69                 | 113            | 0.74                   |                   |               | Y       |
| Eucalyptus gunnii subsp.<br>divaricata         | EuGD; | EN   | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | 11              | 0.36                 | 32             | 0.34                   |                   |               | Y       |
| Eucalyptus gunnii subsp.<br>gunnii             | EuGG; |      |      | В             | NM;        | 200      | 100      | 0    |          |       |        |             | 156             | 0.47                 | 377            | 0.45                   |                   |               | Y       |
| Eucalyptus johnstonii                          | EuJo; |      |      | В             | BL;NS;     | 200      | 100      | 0    |          |       |        |             | 31              | 0.71                 | 54             | 0.76                   |                   |               | Y       |
| Eucalyptus morrisbyi                           | EuMo; | EN   | е    | Р             |            | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 7              | 0.43                   |                   |               | Y       |
| Eucalyptus nebulosa                            | EuNe; |      |      | Р             |            | 200      | 200      | 0    |          |       |        |             | 2               | 1.00                 | 5              | 1.00                   |                   |               | Y       |
| Eucalyptus nitida                              | EuNi; |      |      | В             | BL;NM;     | 200      | 100      | 0    |          |       |        |             | 139             | 0.67                 | 355            | 0.72                   |                   |               | Y       |
| Eucalyptus pauciflora<br>subsp. pauciflora     | EuPP; |      |      | В             | WSW;       | 200      | 100      | 0    |          |       |        |             | 131             | 0.38                 | 345            | 0.35                   |                   |               |         |
| Eucalyptus perriniana                          | EuPe; |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 8              | 0.50                   | Р                 |               |         |
| Eucalyptus pulchella                           | EuPu; |      |      | В             | NS;FL;CH;  | 200      | 100      | 0    |          |       |        |             | 73              | 0.48                 | 166            | 0.49                   |                   |               | Y       |
| Eucalyptus radiata subsp.<br>radiata           | EuRa; |      | r    | Р             |            | 200      | 500      | 0    |          |       |        |             | 9               | 0.67                 | 21             | 0.52                   |                   |               |         |
| Eucalyptus regnans                             | EuRe; |      |      | В             | KI;FL;NM;  | 200      | 100      | 0    |          |       |        |             | 106             | 0.56                 | 270            | 0.55                   |                   |               |         |

| Species                                   | Code   | EPBC | TSPA | Model<br>type | Bioregions   | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------|--------|------|------|---------------|--------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Eucalyptus risdonii                       | EuRi;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 3               | 0.00                 | 10             | 0.30                   | Р                 |               | Y       |
| Eucalyptus rodwayi                        | EuRo;  |      |      | В             | FL;WSW;      | 200      | 100      | 0    |          |       |        |             | 91              | 0.34                 | 178            | 0.36                   |                   |               | Y       |
| Eucalyptus rubida                         | EuRu;  |      |      | В             | NS;WSW;NM;   | 200      | 100      | 0    |          |       |        |             | 52              | 0.38                 | 114            | 0.38                   |                   |               |         |
| Eucalyptus sieberi                        | EuSi;  |      |      | В             | WSW;         | 200      | 100      | 0    |          |       |        |             | 36              | 0.50                 | 99             | 0.55                   |                   |               |         |
| Eucalyptus tenuiramis                     | EuTe;  |      |      | В             | KI;FL;CH;NM; | 200      | 100      | 0    |          |       |        |             | 72              | 0.47                 | 188            | 0.47                   |                   |               | Y       |
| Eucalyptus vernicosa                      | EuVe;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       | 0      |             | 28              | 1.00                 | 45             | 1.00                   |                   |               | Y       |
| Euchiton involucratus                     | Euln;  |      |      | В             | KI;FL;NM;    | 200      | 100      | 0    |          |       |        |             | 53              | 0.42                 | 63             | 0.41                   |                   |               |         |
| Euchiton sphaericus                       | EuSp;  |      |      | В             | BL;KI;WSW;   | 200      | 100      | 0    |          |       |        |             | 8               | 0.50                 | 8              | 0.50                   |                   |               |         |
| Euchiton traversii                        | EuTr;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       | -      |             | 40              | 0.67                 | 75             | 0.75                   |                   |               |         |
| Euchiton umbricola                        | EuUm;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 36              | 0.83                 | 51             | 0.82                   |                   |               |         |
| Eucryphia milliganii                      | EuMi;  |      |      | В             | KI;NS;       | 200      | 100      | 0    |          |       |        |             | 33              | 0.79                 | 70             | 0.86                   |                   |               | Y       |
| Eucryphia milliganii subsp.<br>milliganii | EuMM;  |      |      | В             | KI;NS;       | 200      | 100      | 0    |          |       |        |             | 16              | 0.69                 | 26             | 0.69                   |                   |               |         |
| Euphrasia amphisysepala                   | EuAm;  | VU   | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 5              | 1.00                   |                   |               | Y       |
| Euphrasia collina                         | EuCol; |      |      | В             | NS;FL;WSW;   | 200      | 100      | 0    |          |       |        |             | 33              | 0.82                 | 58             | 0.83                   |                   |               |         |
| Euphrasia collina subsp.<br>collina       | EupCC; |      |      | В             | BL;          | 200      | 100      | 0    |          |       |        |             | 12              | 0.17                 | 22             | 0.23                   |                   |               |         |
| Euphrasia collina subsp.<br>deflexifolia  | EuCDe; |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 16              | 0.75                 | 28             | 0.64                   |                   |               | Y       |
| Euphrasia collina subsp.<br>diemenica     | EuCD;  |      |      | В             | NS;WSW;NM;   | 200      | 100      | 0    |          |       |        |             | 33              | 0.79                 | 45             | 0.76                   |                   |               | Y       |
| Euphrasia collina subsp.<br>tetragona     | EuCT;  |      | е    | Р             |              | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 5              | 0.80                   |                   |               |         |
| Euphrasia fragosa                         | EuFr;  | CR   | е    | Р             |              | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 6              | 0.67                   |                   |               | Y       |
| Euphrasia gibbsiae subsp.<br>microdonta   | EuGM;  |      |      | В             | SR;          | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |

| Species                                      | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Euphrasia gibbsiae subsp.<br>psilantherea    | EupGP; | CR   | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               | Y       |
| Euphrasia gibbsiae subsp.<br>pulvinestris    | EuGPu; |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               | Y       |
| Euphrasia gibbsiae subsp.<br>wellingtonensis | EuGW;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               | Y       |
| Euphrasia phragmostoma                       | EuPh;  | VU   | v    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               | Y       |
| Euphrasia scabra                             | EuSc;  |      | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 10             | 0.60                   | Р                 |               |         |
| Euphrasia semipicta                          | EuSe;  | EN   | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 13             | 0.77                   |                   |               | Y       |
| Euphrasia sp Bivouac Bay                     | EuBB;  | EN   | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 5              | 1.00                   |                   |               | Y       |
| Euphrasia striata                            | EuSt;  |      |      | В             | NS;NM;BL;SE;         | 200      | 100      | 0    |          |       |        |             | 23              | 0.91                 | 36             | 0.94                   |                   |               | Y       |
| Eurychorda complanata                        | EuCom; |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 136             | 0.71                 | 280            | 0.72                   |                   |               |         |
| Euryomyrtus parviflora                       | EuRP;  |      |      | В             | BL;NS;               | 200      | 100      | 0    |          |       |        |             | 19              | 0.47                 | 23             | 0.48                   |                   |               |         |
| Eutaxia microphylla                          | EuMM;  |      | r    | Р             | NM;SE;               | 200      | 100      | 0    |          |       |        |             | 16              | 0.69                 | 26             | 0.69                   |                   |               |         |
| Ewartia catipes                              | EwCa;  |      |      | В             | KI;NS;WSW;N<br>M;SE; | 200      | 100      | 0    |          |       |        |             | 10              | 0.90                 | 16             | 0.94                   |                   |               | Y       |
| Ewartia meredithiae                          | EwMe;  |      |      | В             | NS;NM;               | 200      | 100      | 0    |          |       |        |             | 19              | 1.00                 | 36             | 1.00                   |                   |               | Y       |
| Exocarpos humifusus                          | ExHu;  |      |      | В             | KI;NS;FL;NM;         | 200      | 100      | 0    |          |       |        |             | 59              | 0.85                 | 92             | 0.88                   |                   |               | Y       |
| Exocarpos nanus                              | ExNa;  |      |      | В             | BL;NS;               | 200      | 100      | 0    |          |       |        |             | 14              | 0.79                 | 19             | 0.74                   |                   |               |         |
| Festuca plebeia                              | FePl;  |      |      | В             | KI;NS;WSW;N<br>M;BL; | 200      | 100      | 0    |          |       |        |             | 47              | 0.51                 | 79             | 0.54                   |                   |               | Y       |
| Ficinia nodosa                               | FiNo;  |      |      | В             | CH;NM;               | 200      | 100      | 0    |          |       |        |             | 108             | 0.60                 | 216            | 0.64                   |                   |               |         |
| Forstera bellidifolia                        | FoBe;  |      |      | В             | NS;                  | 200      | 100      | 0    |          |       |        |             | 16              | 1.00                 | 23             | 1.00                   |                   |               | Y       |
| Frankenia pauciflora var.<br>gunnii          | FrPG;  |      | r    | Р             | КІ;                  | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 5              | 1.00                   |                   |               |         |

| Species                                                | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Gahnia filum                                           | GaFi;  |      |      | В             | BL;CH;NM;NS<br>:     | 200      | 100      | 0    |          |       |        |             | 43              | 0.35                 | 56             | 0.32                   |                   |               |         |
| Gahnia microstachya                                    | GaMi;  |      | -    | В             | NS;                  | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 25             | 0.92                   |                   |               |         |
| Gahnia rodwayi                                         | GaRo;  |      | -    | В             | BL;NM;SR;            | 200      | 100      | 0    |          |       |        |             | 25              | 0.32                 | 43             | 0.40                   |                   |               | Y       |
| Gahnia sieberiana                                      | GaSi;  |      |      | В             | SR;                  | 200      | 100      | 0    |          |       |        |             | 59              | 0.49                 | 97             | 0.51                   |                   |               |         |
| Gahnia trifida                                         | GaTr;  |      |      | В             | NM;NS;WSW;           | 200      | 100      | 0    |          |       |        |             | 37              | 0.41                 | 58             | 0.50                   |                   |               |         |
| Galium ciliare                                         | GaCi;  |      |      | В             | KI;NS;FL;NM;         | 200      | 100      | 0    |          |       |        |             | 39              | 0.46                 | 59             | 0.44                   |                   |               |         |
| Gastrodia procera                                      | GaPr;  |      |      | В             | KI;BL;CH;SE;         | 200      | 100      | 0    |          |       |        |             | 21              | 0.67                 | 25             | 0.64                   |                   |               |         |
| Gastrodia sesamoides                                   | GaSe;  |      |      | В             | NS;WSW;NM;<br>BL;    | 200      | 100      | 0    |          |       |        |             | 49              | 0.57                 | 61             | 0.54                   |                   |               |         |
| Gaultheria depressa                                    | GaDe;  |      |      | В             | NS;WSW;NM;<br>BL;    | 200      | 100      | 0    |          |       |        |             | 14              | 0.93                 | 19             | 0.89                   |                   |               |         |
| Gaultheria hispida                                     | GaHi;  |      |      | В             | KI;NM;               | 200      | 100      | 0    |          |       |        |             | 96              | 0.75                 | 176            | 0.78                   |                   |               | Y       |
| Gaultheria lanceolata                                  | GaLa;  |      | 8    | В             | NS;BL;SR;            | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 3              | 1.00                   |                   |               | Y       |
| Gaultheria tasmanica                                   | GaTas; | ÷    |      | В             | SE;                  | 200      | 100      | 0    | ō        |       |        |             | 28              | 0.82                 | 56             | 0.88                   |                   |               | Y       |
| Gentianella diemensis<br>subsp. diemensis              | GeDD;  |      |      | В             | NS;WSW;BL;S<br>E;    | 200      | 100      | 0    |          |       |        |             | 30              | 0.83                 | 39             | 0.87                   |                   |               | Y       |
| Gentianella eichleri                                   | GeEi;  |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 7               | 0.71                 | 8              | 0.63                   |                   |               | Y       |
| Gentianella gunniana                                   | GeGu;  |      |      | В             | CH;BL;SR;            | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 5              | 0.60                   |                   |               |         |
| Gentianella<br>pleurogynoides subsp.<br>pleurogynoides | GePP;  |      |      | В             | BL;CH;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 8               | 0.75                 | 8              | 0.75                   |                   |               | Y       |
| Gentianella polysperes                                 | GePo;  |      |      | В             | NS;BL;SR;SE;         | 200      | 100      | 0    |          |       |        |             | 5               | 0.20                 | 5              | 0.20                   | Р                 |               |         |
| Geococcus pusillus                                     | GePu;  |      | r    | Р             | FL;                  | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               |         |
| Geranium retrorsum                                     | GeRet; |      |      | В             | FL;NM;               | 200      | 100      | 0    |          |       |        |             | 7               | 0.14                 | 8              | 0.13                   | Р                 |               |         |
| Geum talbotianum                                       | GeTa;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 6               | 1.00                 | 8              | 1.00                   |                   |               | Y       |

| Species                              | Code       | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------|------------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Glossostigma elatinoides             | GIEI;      |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 4               | 0.25                 | 4              | 0.25                   | Р                 |               |         |
| Glyceria australis                   | GlAu;      |      |      | В             | KI;NS;FL;NM;<br>BL;  | 200      | 100      | 0    |          |       |        |             | 23              | 0.13                 | 26             | 0.19                   |                   |               |         |
| Glycine clandestina                  | GICI;      |      |      | В             | KI;NM;               | 200      | 100      | 0    |          |       |        |             | 50              | 0.30                 | 65             | 0.35                   |                   |               |         |
| Glycine latrobeana                   | GlLa;      | VU   | v    | Р             |                      | 200      | 500      | 0    |          |       |        |             | 47              | 0.21                 | 83             | 0.27                   |                   |               |         |
| Glycine microphylla                  | GlMi;      |      | v    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 23              | 0.17                 | 40             | 0.17                   |                   |               |         |
| Gnaphalium indutum<br>subsp. indutum | Gnln;      |      |      | В             | NM;WSW;              | 200      | 100      | 0    |          |       |        |             | 12              | 0.75                 | 17             | 0.71                   |                   |               |         |
| Gompholobium ecostatum               | GoEc;      |      | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 6              | 0.33                   | Р                 |               |         |
| Gonocarpus humilis                   | GoHu;      |      |      | В             | KI;NM;               | 200      | 100      | 0    |          |       |        |             | 60              | 0.58                 | 96             | 0.61                   |                   |               |         |
| Gonocarpus montanus                  | GoMo;      |      |      | В             | SE;NM;               | 200      | 100      | 0    |          |       |        |             | 39              | 0.79                 | 70             | 0.81                   |                   |               |         |
| Gonocarpus serpyllifolius            | GoSe;      |      |      | В             | KI;NM;               | 200      | 100      | 0    |          |       |        |             | 77              | 0.56                 | 177            | 0.64                   |                   |               |         |
| Goodenia geniculata                  | GoGe;      |      | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               |         |
| Goodenia humilis                     | GoHum<br>; |      |      | В             | CH;NM;BL;SR<br>;     | 200      | 100      | 0    |          |       |        |             | 15              | 0.33                 | 16             | 0.38                   |                   |               |         |
| Goodenia ovata                       | GoOv;      |      |      | В             | WSW;CH;NM<br>;       | 200      | 100      | 0    |          |       |        |             | 108             | 0.43                 | 256            | 0.42                   |                   |               |         |
| Goodia lotifolia                     | GoLo;      |      |      | В             | CH;NM;               | 200      | 100      | 0    |          |       |        |             | 52              | 0.48                 | 79             | 0.53                   |                   |               |         |
| Goodia pubescens                     | GoPu;      |      |      | В             | NM;SR;               | 200      | 100      | 0    |          |       |        |             | 18              | 0.56                 | 20             | 0.60                   |                   |               |         |
| Grammitis billardierei               | GrBi;      |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 176             | 0.78                 | 428            | 0.76                   |                   |               |         |
| Grammitis pseudociliata              | GrPs;      |      |      | В             | SE;                  | 200      | 100      | 0    |          |       |        |             | 14              | 0.79                 | 22             | 0.82                   |                   |               |         |
| Gratiola nana                        | GrNa;      |      |      | В             | NS;NM;               | 200      | 100      | 0    |          |       |        |             | 38              | 0.61                 | 50             | 0.60                   |                   |               |         |
| Gratiola peruviana                   | GrPe;      |      |      | В             | WSW;                 | 200      | 100      | 0    |          |       |        |             | 30              | 0.33                 | 45             | 0.40                   |                   |               |         |
| Gratiola pubescens                   | GrPu;      |      | v    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 12              | 0.33                 | 19             | 0.26                   |                   |               |         |
| Gunnera cordifolia                   | GuCo;      |      |      | В             | SE;KI;NS;WS<br>W;NM; | 200      | 100      | 0    |          |       |        |             | 19              | 0.58                 | 31             | 0.65                   |                   |               | Y       |

| Species                                | Code   | EPBC | TSPA | Model<br>type | Bioregions   | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------------|--------|------|------|---------------|--------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Gynatrix pulchella                     | GyPu;  |      | r    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 19              | 0.26                 | 32             | 0.19                   |                   |               |         |
| Gyrostemon thesioides                  | GyTh;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 11              | 0.36                 | 20             | 0.55                   |                   |               |         |
| Hakea decurrens                        | HaDe;  |      |      | В             | NS;SE;SR;    | 200      | 100      | 0    |          |       |        |             | 4               | 0.00                 | 5              | 0.00                   | Р                 |               |         |
| Hakea decurrens subsp.<br>physocarpa   | HaDP;  |      |      | В             | NS;SE;SR;    | 200      | 100      | 0    |          |       |        |             | 10              | 0.60                 | 15             | 0.73                   |                   |               |         |
| Hakea epiglottis subsp.<br>epiglottis  | HaEE;  |      |      | В             | KI;NM;NS;FL; | 200      | 100      | 0    |          |       |        |             | 40              | 0.67                 | 59             | 0.69                   |                   |               | Y       |
| Hakea microcarpa                       | HaMi;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 73              | 0.33                 | 159            | 0.33                   |                   |               |         |
| Hakea nodosa                           | HaNo;  |      |      | В             | CH;          | 200      | 100      | 0    |          |       |        |             | 19              | 0.21                 | 31             | 0.39                   |                   |               |         |
| Hakea teretifolia subsp.<br>hirsuta    | НаТН;  |      |      | В             | KI;SR;       | 200      | 100      | 0    |          |       |        |             | 43              | 0.58                 | 82             | 0.60                   |                   |               |         |
| Hakea ulicina                          | HaUl;  |      | v    | Р             |              | 200      | 100      | 0    |          |       |        |             | 9               | 0.33                 | 23             | 0.35                   |                   |               |         |
| Haloragis aspera                       | HaAs;  |      | v    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 3               | 1.00                 | 3              | 1.00                   |                   |               |         |
| Haloragis brownii                      | HaBr;  |      |      | В             | FL;WSW;      | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 5              | 0.60                   |                   |               |         |
| Haloragis heterophylla                 | НаНе;  |      | r    | Р             |              | 200      | 500      | 0    | Y        | o     |        |             | 32              | 0.38                 | 72             | 0.43                   |                   |               |         |
| Haloragis myriocarpa                   | НаМу;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 4              | 0.50                   |                   |               |         |
| Hardenbergia violacea                  | HaVi;  |      | е    | Р             |              | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               |         |
| Hedycarya angustifolia                 | HeAng; |      | r    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 5               | 0.60                 | 15             | 0.53                   |                   |               |         |
| Helichrysum<br>Ieucopsideum            | HeLe;  |      |      | В             | BL;NS;SR;    | 200      | 100      | 0    |          |       |        |             | 13              | 0.31                 | 19             | 0.42                   |                   |               |         |
| Helichrysum pumilum                    | HePu;  |      |      | В             | KI;NS;SE;    | 200      | 100      | 0    |          |       |        |             | 49              | 0.96                 | 91             | 0.98                   |                   |               | Y       |
| Helichrysum pumilum var<br>pumilum     | HePu;  |      |      | В             | KI;NS;SE;    | 200      | 100      | 0    |          |       |        |             | 49              | 0.96                 | 91             | 0.98                   |                   |               | Y       |
| Helichrysum pumilum var<br>spathulatum | HePu;  |      |      | В             | KI;NS;SE;    | 200      | 100      | 0    |          |       |        |             | 49              | 0.96                 | 91             | 0.98                   |                   |               | Y       |

| Species                                       | Code   | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------------|--------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Hemarthria uncinata var.<br>uncinata          | HeUU;  |      |      | В             | BL;                                  | 200      | 100      | 0    |          |       |        |             | 51              | 0.39                 | 75             | 0.40                   |                   |               |         |
| Hemichroa pentandra                           | HePe;  |      |      | В             | KI;                                  | 200      | 100      | 0    |          |       |        |             | 12              | 0.42                 | 15             | 0.40                   |                   |               |         |
| Herpolirion novae-<br>zelandiae               | Henz;  |      |      | В             | NS;NM;SR;SE;                         | 200      | 100      | 0    |          |       |        |             | 23              | 0.87                 | 40             | 0.90                   |                   |               |         |
| Heterozostera tasmanica                       | НеТа;  |      |      | В             | SR;WSW;                              | 200      | 100      | 0    |          |       |        |             | 12              | 0.33                 | 13             | 0.38                   |                   |               |         |
| Hibbertia acicularis                          | HiAc;  |      |      | В             | SR;                                  | 200      | 100      | 0    |          |       |        |             | 43              | 0.53                 | 70             | 0.51                   |                   |               |         |
| Hibbertia appressa                            | HiAp;  |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 12              | 0.67                 | 14             | 0.71                   |                   |               |         |
| Hibbertia basaltica                           | HiBa;  | EN   | е    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 3               | 0.00                 | 7              | 0.29                   | Р                 |               | Y       |
| Hibbertia calycina                            | HiCa;  |      | v    | Р             |                                      | 200      | 100      | 0    |          |       | -      |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               |         |
| Hibbertia empetrifolia<br>subsp. empetrifolia | HiEE;  |      |      | В             | CH;NM;                               | 200      | 100      | 0    |          |       |        |             | 69              | 0.64                 | 146            | 0.65                   |                   |               |         |
| Hibbertia hirsuta                             | HiHir; |      |      | В             | CH;                                  | 200      | 100      | 0    |          |       |        |             | 73              | 0.19                 | 144            | 0.24                   |                   |               | Y       |
| Hibbertia hirticalyx                          | HiHi;  |      |      | В             | KI;NS;                               | 200      | 100      | 0    |          |       |        |             | 27              | 0.41                 | 41             | 0.46                   |                   |               |         |
| Hibbertia rufa                                | HiRu;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 6              | 0.67                   |                   |               | 0       |
| Hibbertia sericea var<br>sericea              | HiSS;  | -    |      | В             | NS;WSW;BL;S<br>R;                    | 200      | 100      | 0    |          |       |        |             | 30              | 0.50                 | 62             | 0.56                   |                   |               |         |
| Hibbertia virgata                             | HiVi;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 10              | 0.50                 | 17             | 0.47                   |                   |               |         |
| Hierochloe rariflora                          | HiRa;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 15              | 0.80                 | 38             | 0.66                   |                   |               |         |
| Hierochloe redolens                           | HiRe;  |      |      | В             | KI;NM;                               | 200      | 100      | 0    |          |       |        |             | 57              | 0.89                 | 87             | 0.92                   |                   |               |         |
| Hookerochloa hookeriana                       | AuHo;  |      |      | В             | FL;NM;                               | 200      | 100      | 0    |          |       |        |             | 22              | 0.45                 | 32             | 0.50                   |                   |               |         |
| Hovea corrickiae                              | HoCo;  |      | r    | Р             |                                      | 200      | 500      | 0    |          |       |        |             | 10              | 0.70                 | 20             | 0.75                   |                   |               |         |
| Hovea longifolia                              | HoLo;  |      | pr   | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 6               | 0.33                 | 7              | 0.43                   |                   |               |         |
| Hovea magnibractea                            | HoMa;  |      |      | В             | BL;NM;                               | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |

| Species                                  | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Hovea montana                            | HoMo;  |      | r    | Р             | FL;NS;              | 200      | 100      | 0    |          |       |        |             | 12              | 0.58                 | 25             | 0.52                   |                   |               |         |
| Hovea tasmanica                          | НоТа;  |      | r    | Р             | CH;FL;NS;           | 200      | 100      | 0    |          |       |        |             | 35              | 0.46                 | 54             | 0.46                   |                   |               | Y       |
| Hyalosperma demissum                     | HyDe;  |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 15              | 0.40                 | 29             | 0.55                   |                   |               |         |
| Hydrocotyle callicarpa                   | HyCal; |      |      | В             | SR;                 | 200      | 100      | 0    |          |       |        |             | 35              | 0.51                 | 58             | 0.45                   |                   |               |         |
| Hydrocotyle capillaris                   | HyCap; |      |      | В             | NS;BL;SR;           | 200      | 100      | 0    |          |       |        |             | 28              | 0.36                 | 34             | 0.38                   |                   |               |         |
| Hydrocotyle comocarpa                    | HyCo;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 4              | 0.50                   | Р                 |               |         |
| Hydrocotyle foveolata                    | HyFo;  |      |      | В             | SE;SR;BK;CH;<br>NS; | 200      | 100      | 0    |          |       |        |             | 29              | 0.38                 | 41             | 0.39                   |                   |               |         |
| Hydrocotyle laxiflora                    | HyLa;  |      | е    | Р             |                     | 200      | 500      | 0    |          |       |        |             | 1               | 0.00                 | 2              | 0.00                   | Р                 |               |         |
| Hydrocotyle muscosa                      | HyMus; |      |      | В             | BL;NM;              | 200      | 100      | 0    |          |       |        |             | 67              | 0.54                 | 120            | 0.54                   |                   |               |         |
| Hydrocotyle pterocarpa                   | HyPt;  | 0    |      | В             | NM;BL;SR;           | 200      | 100      | 0    |          |       |        |             | 30              | 0.47                 | 35             | 0.46                   |                   |               |         |
| Hydrocotyle<br>sibthorpioides            | HySi;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 183             | 0.56                 | 367            | 0.60                   |                   |               |         |
| Hydrocotyle tripartita                   | HyTr;  |      |      | В             | WSW;NM;             | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               |         |
| Hydrorchis orbicularis                   | HyOr;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 9               | 0.22                 | 11             | 0.27                   |                   |               |         |
| Hymenophyllum<br>marginatum              | НуМа;  |      |      | В             | KI;FL;BL;           | 200      | 100      | 0    |          |       |        |             | 22              | 0.86                 | 30             | 0.83                   |                   |               |         |
| Hypolaena fastigiata                     | HyFa;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 63              | 0.60                 | 127            | 0.61                   |                   |               |         |
| Hypolepis distans                        | HyDi;  | EN   | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 11             | 0.27                   |                   |               |         |
| Hypolepis glandulifera                   | HyGl;  |      |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 12              | 0.58                 | 14             | 0.50                   |                   |               |         |
| Hypolepis muelleri                       | HyMu;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 26              | 0.46                 | 38             | 0.47                   |                   |               |         |
| Hypoxis glabella var<br>glabella         | HyGG;  |      |      | В             | KI;NS;SR;           | 200      | 100      | 0    |          |       |        |             | 49              | 0.27                 | 76             | 0.24                   |                   |               |         |
| Hypoxis hygrometrica                     | НуНу;  |      |      | В             | KI;NS;WSW;          | 200      | 100      | 0    |          |       |        |             | 60              | 0.35                 | 92             | 0.29                   |                   |               |         |
| Hypoxis hygrometrica var<br>hygrometrica | НуНу;  |      |      | В             | KI;NS;WSW;          | 200      | 100      | 0    |          |       |        |             | 60              | 0.35                 | 92             | 0.29                   |                   |               |         |

| Species                                   | Code   | EPBC | TSPA | Model<br>type | Bioregions   | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------|--------|------|------|---------------|--------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Hypoxis hygrometrica var<br>villosisepala | НуНу;  |      |      | В             | KI;NS;WSW;   | 200      | 100      | 0    |          |       |        |             | 60              | 0.35                 | 92             | 0.29                   |                   |               |         |
| Hypoxis vaginata                          | HyVa;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 32              | 0.41                 | 64             | 0.42                   |                   |               |         |
| Hypoxis vaginata var.<br>brevistigmata    | HyVaB; |      | pr   | Р             |              | 200      | 100      | 0    |          |       |        |             | 22              | 0.23                 | 40             | 0.17                   |                   |               |         |
| Hypoxis vaginata var.<br>vaginata         | HyVaV; |      | pr   | Р             |              | 200      | 100      | 0    |          |       |        |             | 23              | 0.26                 | 40             | 0.20                   |                   |               |         |
| Imperata cylindrica var.<br>major         | ImCM;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       |        |             | 7               | 0.14                 | 9              | 0.22                   | Р                 |               |         |
| Indigofera australis subsp.<br>australis  | InAu;  |      |      | В             | КІ;          | 200      | 100      | 0    |          |       |        |             | 97              | 0.54                 | 158            | 0.56                   |                   |               |         |
| Isachne globosa                           | IsGl;  |      |      | В             | SE;          | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 2              | 0.00                   | Р                 |               |         |
| Isoetes drummondii<br>subsp. drummondii   | lsDD;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 11              | 0.64                 | 17             | 0.76                   |                   |               |         |
| Isoetes elatior                           | IsEl;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 7               | 0.00                 | 11             | 0.00                   | Р                 |               | Y       |
| Isoetes gunnii                            | lsGu;  |      |      | В             | NS;BL;       | 200      | 100      | 0    |          |       |        |             | 20              | 0.95                 | 23             | 0.96                   |                   |               | Y       |
| Isoetes humilior                          | lsHu;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 9               | 0.78                 | 11             | 0.73                   |                   |               | Y       |
| Isoetes muelleri                          | lsMu;  |      |      | В             | SE;BL;CH;NM; | 200      | 100      | 0    |          |       |        |             | 16              | 0.25                 | 21             | 0.19                   |                   |               |         |
| Isoetes sp. Maxwell River                 | lsMR;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 4              | 1.00                   |                   |               | Y       |
| Isoetopsis graminifolia                   | lsGr;  |      | v    | Р             |              | 200      | 100      | 0    |          |       |        |             | 9               | 0.33                 | 22             | 0.36                   |                   |               |         |
| Isolepis crassiuscula                     | lsCr;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 33              | 0.67                 | 45             | 0.73                   |                   |               |         |
| Isolepis habra                            | lsHa;  |      | r    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 8               | 0.75                 | 8              | 0.75                   |                   |               |         |
| Isolepis hookeriana                       | lsHo;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 15              | 0.53                 | 16             | 0.56                   |                   |               |         |
| Isolepis limbata                          | lsLi;  |      |      | В             | NS;BL;SR;    | 200      | 100      | 0    |          |       |        |             | 11              | 0.82                 | 12             | 0.83                   |                   |               | Y       |
| Isolepis marginata                        | lsMa;  |      |      | В             | SR;NS;CH;    | 200      | 100      | 0    |          |       |        |             | 49              | 0.45                 | 65             | 0.49                   |                   |               |         |

| Species                                 | Code   | EPBC | TSPA | Model<br>type | Bioregions                        | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------|--------|------|------|---------------|-----------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Isolepis montivaga                      | lsMo;  |      |      | В             | KI;NS;FL;NM;<br>BL;               | 200      | 100      | 0    |          |       |        |             | 29              | 0.34                 | 32             | 0.38                   |                   |               |         |
| Isolepis platycarpa                     | IsPl;  |      |      | В             | BL;CH;                            | 200      | 100      | 0    |          |       |        |             | 33              | 0.36                 | 39             | 0.44                   |                   |               |         |
| Isolepis producta                       | lsPr;  |      |      | В             | KI;NS;NM;BL;<br>SR;               | 200      | 100      | 0    |          |       |        |             | 16              | 0.75                 | 19             | 0.74                   |                   |               |         |
| Isolepis stellata                       | lsSt;  |      | r    | Р             |                                   | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 3              | 0.67                   |                   |               |         |
| Isolepis subtilissima                   | lsSu;  |      |      | В             | NM;                               | 200      | 100      | 0    |          |       |        |             | 55              | 0.69                 | 74             | 0.70                   |                   |               |         |
| Isolepis tasmanica                      | lsTas; |      |      | В             | KI;NS;SR;                         | 200      | 100      | 0    |          |       |        |             | 6               | 1.00                 | 6              | 1.00                   |                   |               | Y       |
| Isolepis wakefieldiana                  | lsWa;  |      |      | В             | BL;CH;KI;NM;<br>NS;SE;SR;WS<br>W; | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 6              | 0.50                   |                   |               | 8       |
| Isophysis tasmanica                     | lsTa;  |      |      | В             | SE;NS;                            | 200      | 100      | 0    |          |       |        |             | 26              | 0.96                 | 45             | 0.98                   |                   |               | Y       |
| Isopogon ceratophyllus                  | lsCe;  |      | v    | Р             |                                   | 200      | 100      | 0    |          |       |        |             | 12              | 0.33                 | 28             | 0.36                   |                   |               |         |
| Isotoma fluviatilis subsp.<br>australis | IsFA;  |      |      | В             | KI;NS;FL;WS<br>W;NM;BL;           | 200      | 100      | 0    |          |       |        |             | 20              | 0.55                 | 27             | 0.48                   |                   |               |         |
| Juncus amabilis                         | JuAm;  |      | r    | Р             |                                   | 200      | 100      | 0    |          |       |        |             | 49              | 0.08                 | 87             | 0.07                   | Р                 |               |         |
| Juncus antarcticus                      | JuAn;  |      | 0    | В             | BL;SE;                            | 200      | 100      | 0    |          |       |        |             | 10              | 0.50                 | 12             | 0.58                   |                   |               |         |
| Juncus astreptus                        | JuAs;  |      |      | В             | KI;WSW;                           | 200      | 100      | 0    |          |       |        |             | 69              | 0.39                 | 117            | 0.46                   |                   |               | Y       |
| Juncus bassianus                        | JuBa;  |      |      | В             | FL;NM;                            | 200      | 100      | 0    |          |       |        |             | 75              | 0.53                 | 123            | 0.58                   |                   |               |         |
| Juncus caespiticius                     | JuCa;  |      |      | В             | NM;SR;                            | 200      | 100      | 0    |          |       |        |             | 37              | 0.43                 | 49             | 0.53                   |                   |               |         |
| Juncus curtisiae                        | JuCu;  |      |      | В             | KI;NM;                            | 200      | 100      | 0    |          |       |        |             | 33              | 0.73                 | 42             | 0.76                   |                   |               | Y       |
| Juncus falcatus subsp.<br>falcatus      | JuFa;  |      |      | В             | NS;WSW;NM;<br>BL;SE;              | 200      | 100      | 0    |          |       |        |             | 26              | 0.38                 | 29             | 0.38                   |                   |               |         |
| Juncus filicaulis                       | JuFi;  |      |      | В             | BL;NM;KI;FL;<br>WSW;              | 200      | 100      | 0    |          |       |        |             | 47              | 0.19                 | 70             | 0.19                   |                   |               |         |
| Juncus fockei                           | JuFo;  |      | r    | Р             |                                   | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |

| Species                                           | Code   | EPBC     | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------------|--------|----------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Juncus gregiflorus                                | JuGr;  |          |      | В             | SR;CH;BL;            | 200      | 100      | 0    |          |       |        |             | 27              | 0.59                 | 29             | 0.59                   |                   |               |         |
| Juncus holoschoenus                               | JuHo;  |          |      | В             | SR;KI;NS;CH;B<br>L;  | 200      | 100      | 0    |          |       |        |             | 49              | 0.35                 | 63             | 0.35                   |                   |               |         |
| Juncus kraussii subsp.<br>australiensis           | JuKA;  |          |      | В             | CH;NS;               | 200      | 100      | 0    |          |       |        |             | 79              | 0.42                 | 135            | 0.44                   |                   |               |         |
| Juncus planifolius                                | JuPl;  |          |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 112             | 0.43                 | 175            | 0.45                   |                   |               |         |
| Juncus prismatocarpus                             | JuPr;  |          | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 5              | 0.40                   | Р                 |               |         |
| Juncus revolutus                                  | JuRe;  |          |      | В             | NM;KI;NS;CH;         | 200      | 100      | 0    |          |       |        |             | 8               | 0.13                 | 8              | 0.13                   | Р                 |               |         |
| Juncus sandwithii                                 | JuSa;  |          |      | В             | FL;NM;NS;            | 200      | 100      | 0    |          |       |        |             | 21              | 0.71                 | 26             | 0.65                   |                   |               |         |
| Juncus sarophorus                                 | JuSar; |          |      | В             | KI;NM;NS;            | 200      | 100      | 0    |          |       |        |             | 122             | 0.18                 | 208            | 0.16                   |                   |               |         |
| Juncus subsecundus                                | JuSu;  |          |      | В             | KI;NS;FL;WS<br>W;BL; | 200      | 100      | 0    |          |       |        |             | 62              | 0.18                 | 87             | 0.22                   |                   |               |         |
| Juncus vaginatus                                  | JuVa;  |          | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 14              | 0.43                 | 16             | 0.50                   |                   |               |         |
| Kennedia prostrata                                | KePr;  |          | ÷    | В             | BL;CH;WSW;           | 200      | 100      | 0    |          |       |        |             | 78              | 0.47                 | 138            | 0.49                   |                   |               |         |
| Kunzea ambigua                                    | KuAm;  |          |      | В             | NS;                  | 200      | 100      | 0    |          |       |        | ō,          | 40              | 0.55                 | 84             | 0.58                   |                   |               |         |
| Lachnagrostis aemula                              | LaAem; |          |      | В             | BL;NM;NS;            | 200      | 100      | 0    |          |       |        |             | 55              | 0.51                 | 75             | 0.45                   |                   |               |         |
| Lachnagrostis billardierei<br>subsp. billardierei | LaBB;  | <u>a</u> |      | В             | WSW;SE;              | 200      | 100      | 0    |          |       |        |             | 9               | 0.89                 | 9              | 0.89                   | -                 |               | 5       |
| Lachnagrostis billardierei<br>subsp. tenuiseta    | LaBT;  |          | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 4               | 0.25                 | 5              | 0.40                   | Р                 |               | Y       |
| Lachnagrostis punicea<br>subsp. filifolia         | LaPF;  |          | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 4              | 0.25                   | Р                 |               |         |
| Lachnagrostis punicea<br>subsp. punicea           | LaPP;  |          | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 8               | 0.00                 | 8              | 0.00                   | Р                 |               |         |
| Lachnagrostis robusta                             | LaRo;  |          | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 5               | 0.20                 | 9              | 0.22                   | Р                 |               |         |
| Lachnagrostis scabra<br>subsp. scabra             | LaSS;  |          | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 20              | 0.65                 | 33             | 0.67                   |                   |               |         |

| Species                              | Code  | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------|-------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Lagarostrobos franklinii             | LaFr; |      |      | В             | SE;                  | 200      | 100      | 0    |          |       |        |             | 29              | 0.90                 | 49             | 0.94                   |                   |               | Y       |
| Lagenophora gracilis                 | LaGr; |      |      | В             | BL;FL;SR;WS<br>W;    | 200      | 100      | 0    |          |       |        |             | 11              | 0.55                 | 12             | 0.58                   |                   |               |         |
| Lagenophora huegelii                 | LaHu; |      |      | В             | CH;KI;NS;            | 200      | 100      | 0    |          |       |        |             | 43              | 0.35                 | 68             | 0.29                   |                   |               |         |
| Lagenophora montana                  | LaMo; |      |      | В             | NS;NM;SR;SE;         | 200      | 100      | 0    |          |       |        |             | 9               | 0.78                 | 11             | 0.82                   |                   |               |         |
| Lasiopetalum baueri                  | LaBa; |      | r    | Р             | NS;                  | 200      | 200      | 0    |          |       |        |             | 9               | 0.67                 | 14             | 0.57                   |                   |               |         |
| Lasiopetalum discolor                | LaDi; |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        | aı          | 2               | 0.50                 | 5              | 0.80                   | Р                 |               |         |
| Lasiopetalum micranthum              | LaMi; | -    | r    | Р             |                      | 200      | 100      | 0    |          |       |        | ōı          | 4               | 0.75                 | 14             | 0.21                   |                   |               | Y       |
| Lastreopsis hispida                  | LaHi; |      |      | В             | BL;NS;               | 200      | 100      | 0    |          |       |        |             | 13              | 0.77                 | 15             | 0.80                   |                   |               |         |
| Lawrencia spicata                    | LaSp; | -    |      | В             | NM;WSW;              | 200      | 100      | 0    |          |       |        |             | 17              | 0.35                 | 20             | 0.35                   |                   |               |         |
| Laxmannia orientalis                 | LaOr; |      | o    | В             | SR;BL;NM;            | 200      | 100      | 0    |          |       |        | ······      | 38              | 0.58                 | 51             | 0.57                   |                   |               |         |
| Leiocarpa supina                     | LeSu; |      |      | В             | FL;                  | 200      | 100      | 0    |          |       |        | a           | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Leionema bilobum subsp.<br>truncatum | LeBT; | 0    | 0    | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 13              | 0.69                 | 22             | 0.73                   | -                 |               | Y       |
| Lemna disperma                       | LeDi; |      |      | В             | NM;NS;WSW;<br>SE;SR; | 200      | 100      | 0    |          |       |        |             | 31              | 0.39                 | 39             | 0.38                   |                   |               |         |
| Lemna trisulca                       | LeTr; |      |      | В             | FL;                  | 200      | 100      | 0    |          |       |        |             | 11              | 0.45                 | 19             | 0.47                   |                   |               |         |
| Lepidium desvauxii                   | LeDe; |      | -    | В             | NM;NS;WSW;           | 200      | 100      | 0    |          |       |        |             | 12              | 0.67                 | 16             | 0.69                   |                   |               |         |
| Lepidium flexicaule                  | LeFl; |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 5              | 1.00                   |                   |               |         |
| Lepidium hyssopifolium               | LeHy; | EN   | e    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 31              | 0.10                 | 51             | 0.10                   | Р                 |               |         |
| Lepidium<br>pseudotasmanicum         | LePs; |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 53              | 0.17                 | 101            | 0.17                   |                   |               |         |
| Lepidosperma curtisiae               | LeCu; |      |      | В             | SR;NS;WSW;<br>BL;    | 200      | 100      | 0    |          |       |        |             | 41              | 0.37                 | 70             | 0.33                   |                   |               |         |
| Lepidosperma forsythii               | LeFo; |      | r    | Р             |                      | 200      | 200      | 0    |          |       |        |             | 5               | 0.20                 | 5              | 0.20                   | Р                 |               |         |
| Lepidosperma gladiatum               | LeGl; |      |      | В             | BL;                  | 200      | 100      | 0    |          |       |        |             | 41              | 0.71                 | 74             | 0.78                   |                   |               |         |

| Species                       | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Lepidosperma globosum         | LeGlb; |      |      | В             | BL;FL;NM;SR;        | 200      | 100      | 0    |          |       |        |             | 10              | 0.40                 | 13             | 0.46                   |                   |               | Y       |
| Lepidosperma<br>Iongitudinale | LepLo; |      |      | В             | CH;                 | 200      | 100      | 0    |          |       |        |             | 125             | 0.44                 | 226            | 0.45                   |                   |               |         |
| Lepidosperma neesii           | LeNe;  |      |      | В             | FL;                 | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Lepidosperma oldfieldii       | LeOl;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 17              | 0.71                 | 20             | 0.70                   |                   |               | Y       |
| Lepidosperma tortuosum        | LeTo;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 11              | 0.64                 | 17             | 0.59                   |                   |               |         |
| Lepidosperma viscidum         | LeVis; |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 7               | 0.57                 | 16             | 0.50                   |                   |               |         |
| Lepilaena cylindrocarpa       | LeCy;  | -    | 0    | В             | KI;NM;              | 200      | 100      | 0    |          |       |        |             | 16              | 0.38                 | 22             | 0.41                   |                   |               |         |
| Lepilaena marina              | LeMa;  | 0    | r    | Р             | SE;                 | 200      | 100      | 0    |          |       |        |             | 0               |                      | 0              |                        | Р                 |               |         |
| Lepilaena patentifolia        | LePa;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 7               | 0.57                 | 8              | 0.50                   |                   |               |         |
| Lepilaena preissii            | LePr;  | 0    | r    | Р             | SE;                 | 200      | 200      | 0    | Y        |       |        |             | 3               | 0.00                 | 3              | 0.00                   | Р                 |               |         |
| Leptecophylla abietina        | LeAb;  |      |      | В             | SE;                 | 200      | 100      | 0    |          |       |        |             | 19              | 0.95                 | 37             | 0.95                   |                   |               | Y       |
| Leptecophylla divaricata      | LeDiv; | 0    | 0    | В             | NS;FL;CH;BL;        | 200      | 100      | 0    |          |       |        |             | 40              | 0.47                 | 81             | 0.56                   |                   |               | Y       |
| Leptecophylla<br>pogonocalyx  | LePo;  |      |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 23              | 0.91                 | 28             | 0.93                   |                   |               | Y       |
| Leptinella filicula           | LeFi;  |      |      | В             | KI;NM;              | 200      | 100      | 0    |          |       |        |             | 25              | 0.84                 | 27             | 0.85                   |                   |               |         |
| Leptinella longipes           | LeLo;  | 0    |      | В             | NS;CH;NM;           | 200      | 100      | 0    |          |       |        |             | 46              | 0.61                 | 64             | 0.66                   |                   |               |         |
| Leptinella reptans            | LeRe;  |      |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 88              | 0.49                 | 139            | 0.55                   |                   |               |         |
| Leptocarpus tenax             | LeTe;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 136             | 0.65                 | 305            | 0.68                   |                   |               |         |
| Leptoceras menziesii          | LeMe;  | 8    | 5    | В             | NM;NS;BL;SE;<br>SR; | 200      | 100      | 0    |          |       |        |             | 9               | 0.67                 | 12             | 0.58                   |                   |               |         |
| Leptomeria glomerata          | LeGlm; |      |      | В             | NM;NS;SE;           | 200      | 100      | 0    |          |       |        | -           | 23              | 1.00                 | 27             | 1.00                   |                   |               | Y       |
| Leptorhynchos elongatus       | LeEl;  |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 4               | 0.25                 | 6              | 0.17                   | Р                 |               |         |
| Leptorhynchos nitidulus       | LehNi; |      |      | В             | SR;NS;FL;NM;<br>BL; | 200      | 100      | 0    |          |       |        |             | 35              | 0.31                 | 51             | 0.39                   |                   |               |         |

| Species                                    | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Leptorhynchos squamatus<br>subsp. alpinus  | LeSA;  |      |      | В             | BL;SE;SR;            | 200      | 100      | 0    |          |       |        |             | 8               | 0.50                 | 11             | 0.45                   |                   |               |         |
| Leptospermum<br>grandiflorum               | LeGr;  |      |      | В             | NS;BL;SR;            | 200      | 100      | 0    |          |       |        |             | 12              | 0.58                 | 26             | 0.50                   |                   |               | Y       |
| Leptospermum<br>laevigatum                 | LeLae; |      |      | В             | SE;SR;NS;WS<br>W;BL; | 200      | 100      | 0    |          |       |        |             | 33              | 0.52                 | 75             | 0.64                   |                   |               |         |
| Leptospermum nitidum                       | LesNi; |      |      | В             | SE;FL;               | 200      | 100      | 0    |          |       |        |             | 86              | 0.83                 | 182            | 0.88                   |                   |               | Y       |
| Leptospermum riparium                      | LeRi;  |      |      | В             | NS;NM;               | 200      | 100      | 0    |          |       |        |             | 21              | 0.90                 | 31             | 0.94                   |                   |               | Y       |
| Leptospermum rupestre                      | LeRup; |      |      | В             | KI;NM;               | 200      | 100      | 0    |          |       |        |             | 37              | 0.89                 | 80             | 0.92                   |                   |               | Y       |
| Leucochrysum albicans<br>var tricolor      | LeAl;  | EN   | е    | Р             | KI;NS;SE;SR;         | 200      | 100      | 0    |          |       |        |             | 20              | 0.35                 | 43             | 0.42                   |                   |               |         |
| Leucophyta brownii                         | LeBr;  |      |      | В             | KI;NS;SR;SE;         | 200      | 100      | 0    |          |       |        |             | 16              | 0.81                 | 30             | 0.77                   |                   |               |         |
| Leucopogon affinis                         | LeAf;  |      | r    | Р             | Ki;                  | 200      | 100      | 0    |          |       |        |             | 10              | 0.40                 | 17             | 0.35                   |                   |               |         |
| Leucopogon esquamatus                      | LeEs;  |      | r    | Р             |                      | 200      | 200      | 0    |          |       |        |             | 3               | 0.33                 | 10             | 0.30                   | Р                 |               |         |
| Leucopogon fraseri                         | LeFr;  |      |      | В             | NS;FL;WSW;B<br>L;    | 200      | 100      | 0    |          |       |        |             | 51              | 0.57                 | 89             | 0.56                   |                   |               |         |
| Leucopogon lanceolatus<br>var. lanceolatus | LeAf;  |      | r    | Р             | КІ;                  | 200      | 100      | 0    |          |       |        |             | 10              | 0.40                 | 17             | 0.35                   |                   |               |         |
| Leucopogon pilifer                         | LePi;  |      |      | В             | NS;NM;               | 200      | 100      | 0    |          |       |        |             | 17              | 1.00                 | 30             | 1.00                   |                   |               |         |
| Leucopogon virgatus var.<br>brevifolius    | LeViB; |      | r    | Р             |                      | 200      | 500      | 0    |          |       |        |             | 6               | 0.33                 | 9              | 0.22                   |                   |               |         |
| Libertia pulchella                         | LiPu;  |      |      | В             | SE;                  | 200      | 100      | 0    |          |       |        |             | 45              | 0.82                 | 89             | 0.82                   |                   |               |         |
| Libertia pulchella var<br>pygmaea          | LiPu;  |      |      | В             | SE;                  | 200      | 100      | 0    |          |       |        |             | 45              | 0.82                 | 89             | 0.82                   |                   |               | Y       |
| Libertia pulchella var.<br>pulchella       | LiPu;  |      |      | В             | SE;                  | 200      | 100      | 0    |          |       |        |             | 45              | 0.82                 | 89             | 0.82                   |                   |               |         |
| Limonium australe var.<br>australe         | LiAA;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 9               | 0.22                 | 13             | 0.15                   |                   |               |         |

| Species                                    | Code  | EPBC | TSPA | Model<br>type | Bioregions        | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------------|-------|------|------|---------------|-------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Limonium australe var.<br>baudinii         | LiBa; | VU   | v    | Р             |                   | 200      | 500      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               | Y       |
| Limosella australis                        | LiAu; |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 36              | 0.42                 | 47             | 0.47                   |                   |               |         |
| Lindsaea linearis                          | LiLi; |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 118             | 0.68                 | 234            | 0.66                   |                   |               |         |
| Linum marginale                            | LiMa; |      |      | В             | NS;BL;            | 200      | 100      | 0    |          |       |        |             | 90              | 0.33                 | 151            | 0.36                   |                   |               |         |
| Liparophyllum exaltatum                    | VeEx; |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 7              | 0.43                   |                   |               |         |
| Liparophyllum exiguum                      | LiEx; |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 34              | 0.71                 | 49             | 0.67                   |                   |               | Y       |
| Lobelia anceps                             | LoAn; | 0    | 0    | В             | FL;SE;            | 200      | 100      | 0    |          |       |        |             | 74              | 0.62                 | 133            | 0.59                   |                   |               |         |
| Lobelia irrigua                            | Lolr; | 0    | 0    | В             | NM;WSW;           | 200      | 100      | 0    |          |       |        |             | 23              | 0.30                 | 33             | 0.21                   |                   |               |         |
| Lobelia pratioides                         | LoPr; |      | v    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 11              | 0.45                 | 16             | 0.56                   |                   |               |         |
| Lobelia rhombifolia                        | LoRh; |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 4              | 1.00                   |                   |               |         |
| Lobelia surrepens                          | LoSu; |      |      | В             | NM;NS;SE;         | 200      | 100      | 0    |          |       |        |             | 15              | 0.60                 | 17             | 0.53                   |                   |               |         |
| Lomandra nana                              | LoNa; | 0    | 0    | В             | SR;CH;BL;         | 200      | 100      | 0    |          |       |        |             | 53              | 0.32                 | 121            | 0.36                   |                   |               |         |
| Lotus australis                            | LoAu; |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 17              | 0.82                 | 28             | 0.86                   |                   |               |         |
| Luzula atrata                              | LuAt; |      | r    | Р             | SR;               | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 5              | 1.00                   |                   |               |         |
| Luzula australasica subsp.<br>australasica | LuAA; |      |      | В             | NS;BL;NM;         | 200      | 100      | 0    |          |       |        |             | 20              | 0.60                 | 33             | 0.70                   |                   |               | Y       |
| Luzula meridionalis                        | LuMe; |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 36              | 0.42                 | 48             | 0.38                   |                   |               |         |
| Luzula modesta                             | LuMo; |      |      | В             | KI;NM;SE;         | 200      | 100      | 0    |          |       |        |             | 16              | 0.69                 | 26             | 0.77                   |                   |               |         |
| Lycopodiella diffusa                       | LyDi; |      |      | В             | SE;KI;NS;         | 200      | 100      | 0    |          |       |        |             | 25              | 0.80                 | 38             | 0.84                   |                   |               |         |
| Lycopodiella lateralis                     | LyLa; | 0    |      | В             | NS;BL;            | 200      | 100      | 0    |          |       |        |             | 51              | 0.73                 | 85             | 0.79                   |                   |               |         |
| Lycopodium fastigiatum                     | LyFa; |      |      | В             | KI;NM;            | 200      | 100      | 0    |          |       |        |             | 80              | 0.81                 | 175            | 0.86                   |                   |               |         |
| Lycopus australis                          | LyAu; |      | е    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 9               | 0.33                 | 11             | 0.36                   |                   |               |         |
| Lyperanthus suaveolens                     | LySu; |      |      | В             | SR;KI;NS;WS<br>W; | 200      | 100      | 0    |          |       |        |             | 21              | 0.48                 | 27             | 0.48                   |                   |               |         |
| Species                                   | Code   | EPBC | TSPA | Model<br>type | Bioregions             | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------|--------|------|------|---------------|------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Lythrum hyssopifolia                      | LyHy;  |      |      | В             | SE;SR;NS;WS<br>W;BL;   | 200      | 100      | 0    |          |       |        |             | 50              | 0.14                 | 71             | 0.17                   |                   |               |         |
| Lythrum salicaria                         | LySa;  |      | v    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 16              | 0.13                 | 25             | 0.20                   | Р                 |               |         |
| Malva australiana                         | MaAu;  |      |      | В             | KI;NM;NS;SE;           | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Malva preissiana                          | MaPr;  |      |      | В             | KI;NS;WSW;N<br>M;SE;   | 200      | 200      | 0    |          |       |        |             | 2               | 0.50                 | 5              | 0.80                   | Р                 |               |         |
| Mazus pumilio                             | MaPu;  |      |      | В             | SR;NS;CH;NM<br>;       | 200      | 100      | 0    |          |       |        |             | 40              | 0.42                 | 55             | 0.45                   |                   |               |         |
| Melaleuca armillaris<br>subsp. armillaris | MeAA;  |      |      | В             | SE;                    | 200      | 100      | 0    |          |       |        |             | 7               | 0.29                 | 8              | 0.38                   |                   |               |         |
| Melaleuca gibbosa                         | MeGi;  |      |      | В             | NS;CH;NM;              | 200      | 100      | 0    |          |       |        |             | 70              | 0.44                 | 144            | 0.49                   |                   |               |         |
| Melaleuca pustulata                       | MePu;  |      | r    | Р             |                        | 200      | 500      | 0    | Y        |       |        |             | 11              | 0.36                 | 30             | 0.17                   |                   |               | Y       |
| Melaleuca squamea                         | MeSq;  |      |      | В             | NM;                    | 200      | 100      | 0    |          |       |        |             | 152             | 0.71                 | 312            | 0.77                   |                   |               |         |
| Melaleuca squarrosa                       | MeSqu; |      |      | В             | NM;                    | 200      | 100      | 0    |          |       |        |             | 185             | 0.59                 | 456            | 0.61                   |                   |               |         |
| Melicytus dentatus                        | MeDe;  |      |      | В             | KI;NS;FL;NM;<br>BL;SR; | 200      | 100      | 0    |          |       |        |             | 51              | 0.24                 | 80             | 0.24                   |                   |               |         |
| Mentha australis                          | MeAu;  |      | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 4              | 1.00                   |                   |               |         |
| Mentha diemenica                          | MeDi;  |      |      | В             | NM;NS;                 | 200      | 100      | 0    |          |       |        |             | 15              | 0.67                 | 21             | 0.76                   |                   |               |         |
| Mentha diemenica var.<br>diemenica        | MeDD;  |      |      | В             | NS;WSW;NM;<br>SE;      | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 3              | 0.67                   |                   |               |         |
| Micrantheum hexandrum                     | MiHe;  |      |      | В             | FL;                    | 200      | 100      | 0    |          |       |        |             | 37              | 0.62                 | 79             | 0.56                   |                   |               |         |
| Micrantheum<br>serpentinum                | MiSe;  |      | r    | Р             |                        | 200      | 500      | 0    | Y        |       |        |             | 3               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Microseris lanceolata                     | MiLa;  |      |      | В             | KI;FL;                 | 200      | 100      | 0    |          |       |        |             | 87              | 0.52                 | 163            | 0.60                   |                   |               |         |
| Microtidium atratum                       | MiAt;  |      | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 19              | 0.53                 | 30             | 0.43                   |                   |               |         |
| Microtis parviflora                       | MiPrv; |      |      | В             | BL;NM;CH;W<br>SW;      | 200      | 100      | 0    |          |       |        |             | 36              | 0.25                 | 48             | 0.29                   |                   |               |         |

| Species                                | Code   | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------------|--------|------|------|---------------|------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Milligania densiflora                  | MiDe;  |      |      | В             | NS;        | 200      | 100      | 0    |          |       |        |             | 16              | 1.00                 | 23             | 1.00                   |                   |               | Y       |
| Milligania johnstonii                  | MiJo;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 7              | 1.00                   |                   |               | Y       |
| Milligania longifolia                  | MiLo;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 5              | 1.00                   |                   |               | Y       |
| Millotia muelleri                      | MiMu;  |      | r    | Р             | FL;        | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               |         |
| Millotia tenuifolia var<br>tenuifolia  | MiTT;  |      |      | В             | SR;CH;     | 200      | 100      | 0    |          |       |        |             | 38              | 0.37                 | 66             | 0.33                   |                   |               |         |
| Mirbelia oxylobioides                  | MiOx;  |      | v    | Р             |            | 200      | 100      | 0    |          |       |        |             | 2               | 0.00                 | 5              | 0.60                   | Р                 |               |         |
| Mitrasacme pilosa                      | MiPi;  | 0    |      | В             | NM;        | 200      | 100      | 0    |          |       | 5      |             | 48              | 0.67                 | 70             | 0.63                   |                   |               |         |
| Mitrasacme pilosa var.<br>pilosa       | MiPP;  |      |      | В             | NM;        | 200      | 100      | 0    |          |       |        |             | 25              | 0.68                 | 29             | 0.72                   |                   |               |         |
| Mitrasacme pilosa var.<br>stuartii     | MiPS;  |      |      | В             | NM;        | 200      | 100      | 0    |          |       |        |             | 13              | 0.54                 | 16             | 0.63                   |                   |               |         |
| Mitrasacme serpyllifolia               | MitSe; |      |      | В             | NS;SE;     | 200      | 100      | 0    |          |       |        |             | 19              | 0.84                 | 34             | 0.79                   |                   |               |         |
| Monotoca elliptica                     | MoEp;  |      |      | В             | NS;BL;     | 200      | 100      | 0    |          |       |        |             | 40              | 0.55                 | 71             | 0.55                   |                   |               |         |
| Monotoca glauca                        | MoGl;  |      |      | В             | NM;        | 200      | 100      | 0    |          |       |        |             | 210             | 0.67                 | 599            | 0.67                   |                   |               |         |
| Monotoca linifolia                     | MoLi;  |      |      | В             | NS;        | 200      | 100      | 0    |          |       |        |             | 22              | 0.64                 | 36             | 0.64                   |                   |               | Y       |
| Monotoca linifolia subsp.<br>algida    | MoLA;  |      |      | В             | NS;        | 200      | 100      | 0    |          |       |        |             | 17              | 0.82                 | 23             | 0.78                   |                   |               | Y       |
| Monotoca linifolia subsp.<br>linifolia | MoLL;  |      |      | В             | NS;        | 100      | 100      | 0    |          |       |        |             | 8               | 0.75                 | 12             | 0.75                   |                   |               | Y       |
| Monotoca submutica var.<br>autumnalis  | MoSu;  |      | r    | Р             | BL;NS;SE;  | 200      | 100      | 0    |          |       |        |             | 11              | 0.73                 | 20             | 0.75                   |                   |               | Y       |
| Muehlenbeckia adpressa                 | MuAu;  |      |      | В             | CH;SR;WSW; | 200      | 100      | 0    |          |       |        |             | 37              | 0.65                 | 58             | 0.66                   |                   |               |         |
| Muehlenbeckia axillaris                | MuAx;  |      | r    | Р             |            | 200      | 100      | 0    |          |       |        |             | 27              | 0.30                 | 48             | 0.31                   |                   |               |         |
| Muehlenbeckia gunnii                   | MuGu;  |      |      | В             | SR;FL;     | 200      | 100      | 0    |          |       |        |             | 49              | 0.51                 | 92             | 0.51                   |                   |               |         |
| Myoporum insulare                      | Myln;  |      |      | В             | NS;        | 200      | 100      | 0    |          |       |        |             | 49              | 0.59                 | 89             | 0.61                   |                   |               |         |

| Species                                               | Code   | EPBC | TSPA | Model<br>type | Bioregions              | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------------------|--------|------|------|---------------|-------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Myoporum parvifolium;                                 | MyPa;  |      | v    | Р             | FL;                     | 200      | 200      | 0    |          |       |        |             | 3               | 0.67                 | 4              | 0.50                   |                   |               |         |
| Myosotis australis                                    | MyAu;  |      |      | В             | NM;NS;                  | 200      | 100      | 0    |          |       |        |             | 53              | 0.58                 | 77             | 0.61                   |                   | 2             |         |
| Myosotis exarrhena                                    | MyEx;  |      |      | В             | NS;                     | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 6              | 0.67                   |                   |               |         |
| Myosurus australis                                    | MyAu;  |      | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 53              | 0.58                 | 77             | 0.61                   |                   |               |         |
| Myriophyllum amphibium                                | MyAm;  |      |      | В             | CH;BL;SE;               | 200      | 100      | 0    |          |       |        | -           | 20              | 0.50                 | 29             | 0.52                   |                   |               |         |
| Myriophyllum<br>austropygmaeum                        | MyAus; |      |      | В             | KI;NS;NM;BL;<br>SR;     | 200      | 100      | 0    |          |       |        |             | 16              | 0.94                 | 21             | 0.95                   |                   |               | Y       |
| Myriophyllum<br>integrifolium                         | Myln;  |      | v    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 49              | 0.59                 | 89             | 0.61                   |                   |               |         |
| Myriophyllum muelleri                                 | MyMu;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 6               | 0.67                 | 7              | 0.71                   |                   |               |         |
| Myriophyllum<br>pedunculatum                          | MyPe;  |      |      | В             | KI;NS;                  | 200      | 100      | 0    |          |       |        |             | 37              | 0.62                 | 50             | 0.60                   |                   |               |         |
| Myriophyllum<br>pedunculatum var<br>longibracteolatum | MyPL;  |      |      | В             | KI;FL;                  | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Myriophyllum<br>pedunculatum var<br>pedunculatum      | MyPP;  | 0    |      | В             | KI;NM;NS;               | 200      | 100      | 0    |          |       |        | G           | 22              | 0.73                 | 30             | 0.80                   |                   |               |         |
| Myriophyllum<br>salsugineum                           | MySa;  | 0    |      | В             | BL;NS;NM;               | 200      | 100      | 0    |          |       |        |             | 46              | 0.28                 | 67             | 0.30                   |                   |               |         |
| Myriophyllum simulans                                 | MySi;  |      |      | В             | NM;KI;WSW;              | 200      | 100      | 0    |          |       |        |             | 24              | 0.25                 | 36             | 0.25                   |                   |               |         |
| Myriophyllum variifolium                              | MyVa;  |      |      | В             | SR;BL;NS;FL;<br>WSW;NM; | 200      | 100      | 0    |          |       |        |             | 12              | 0.33                 | 14             | 0.36                   |                   |               |         |
| Nematolepis squamea                                   | NeSq;  |      |      | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 149             | 0.63                 | 385            | 0.65                   |                   |               |         |
| Nematolepis squamea<br>subsp. retusa                  | NeSq;  |      |      | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 149             | 0.63                 | 385            | 0.65                   |                   |               | Y       |
| Nematolepis squamea<br>subsp. squamea                 | NeSS;  |      |      | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 44              | 0.68                 | 58             | 0.71                   |                   |               |         |

| Species                                   | Code   | EPBC | TSPA | Model<br>type | Bioregions                 | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic  |
|-------------------------------------------|--------|------|------|---------------|----------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|----------|
| Nothofagus cunninghamii                   | NoCu;  |      |      | В             | NM;                        | 200      | 100      | 0    |          |       |        |             | 194             | 0.73                 | 623            | 0.72                   |                   |               |          |
| Odixia achlaena                           | OdAc;  |      | r    | Р             |                            | 200      | 500      | 0    |          |       |        |             | 4               | 0.50                 | 11             | 0.45                   |                   |               | Y        |
| Olearia algida                            | OIAI;  |      |      | В             | SE;NS;NM;                  | 200      | 100      | 0    |          |       |        |             | 42              | 0.48                 | 74             | 0.50                   |                   |               |          |
| Olearia ciliata                           | OlCi;  |      |      | В             | NM;                        | 200      | 100      | 0    |          |       |        |             | 13              | 0.54                 | 18             | 0.50                   |                   |               |          |
| Olearia ericoides                         | OlEr;  |      |      | В             | SR;CH;BL;                  | 200      | 100      | 0    |          |       |        |             | 22              | 0.14                 | 28             | 0.18                   |                   |               | Y        |
| Olearia erubescens                        | OlEru; |      |      | В             | NM;                        | 200      | 100      | 0    |          |       |        |             | 93              | 0.60                 | 158            | 0.61                   |                   |               | <u>}</u> |
| Olearia floribunda                        | OIFI;  |      |      | В             | SR;KI;NS;FL;<br>WSW;NM;BL; | 200      | 100      | 0    |          |       |        |             | 26              | 0.38                 | 35             | 0.37                   |                   |               |          |
| Olearia glandulosa                        | OIGI;  |      |      | В             | KI;NS;FL;NM;               | 200      | 100      | 0    |          |       |        |             | 35              | 0.40                 | 47             | 0.40                   |                   |               |          |
| Olearia glutinosa                         | OlGlu; |      |      | В             | NS;WSW;CH;                 | 200      | 100      | 0    |          |       |        |             | 8               | 0.50                 | 17             | 0.71                   |                   |               | <u>}</u> |
| Olearia hookeri                           | OlHo;  | 0    | r    | Р             |                            | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 9              | 0.56                   |                   |               | Y        |
| Olearia lepidophylla                      | OlLe;  | 0    |      | В             | SE;                        | 200      | 100      | 0    |          |       |        |             | 25              | 0.80                 | 36             | 0.86                   |                   |               | 2        |
| Olearia myrsinoides                       | OlMy;  | 0    |      | В             | KI;FL;NM;                  | 200      | 100      | 0    |          |       |        |             | 58              | 0.48                 | 92             | 0.48                   |                   |               | 2        |
| Olearia obcordata                         | OlOb;  |      |      | В             | SE;SR;NM;                  | 200      | 100      | 0    |          |       |        |             | 16              | 0.81                 | 25             | 0.84                   |                   |               | Y        |
| Olearia pinifolia                         | OlPi;  | ō    |      | В             | NM;                        | 200      | 100      | 0    |          |       | 0      |             | 25              | 0.96                 | 48             | 0.96                   |                   |               | Y        |
| Olearia stellulata                        | OlSt;  |      |      | В             | NM;                        | 200      | 100      | 0    |          |       |        |             | 89              | 0.70                 | 157            | 0.65                   |                   |               |          |
| Olearia tasmanica                         | OlTa;  |      |      | В             | NM;NS;                     | 200      | 100      | 0    |          |       |        |             | 25              | 0.88                 | 28             | 0.89                   |                   |               | Y        |
| Opercularia ovata                         | OpOv;  |      |      | В             | KI;NS;CH;SE;               | 200      | 100      | 0    |          |       |        |             | 29              | 0.21                 | 47             | 0.19                   |                   |               |          |
| Opercularia varia                         | OpVa;  |      |      | В             | CH;                        | 200      | 100      | 0    |          |       |        |             | 89              | 0.48                 | 149            | 0.56                   |                   |               |          |
| Ophioglossum lusitanicum subsp. coriaceum | OpLC;  |      |      | В             | BL;NS;                     | 200      | 100      | 0    |          |       |        |             | 41              | 0.56                 | 53             | 0.51                   |                   |               |          |
| Oreobolus acutifolius                     | OrAc;  |      |      | В             | NS;                        | 200      | 100      | 0    |          |       |        |             | 22              | 0.95                 | 38             | 0.97                   |                   |               | Y        |
| Oreobolus distichus                       | OrDis; |      |      | В             | NM;WSW;                    | 200      | 100      | 0    |          |       |        |             | 38              | 0.87                 | 80             | 0.92                   |                   |               |          |
| Oreobolus oligocephalus                   | OrOl;  |      |      | В             | NS;BL;SR;                  | 200      | 100      | 0    |          |       |        |             | 15              | 0.93                 | 20             | 0.95                   |                   |               | Y        |

| Species                           | Code   | EPBC | TSPA | Model<br>type | Bioregions   | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------|--------|------|------|---------------|--------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Oreomyrrhis argentea              | OrAl;  |      |      | В             | KI;WSW;      | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 7              | 0.43                   |                   |               |         |
| Oreomyrrhis ciliata               | OrCi;  |      |      | В             | NS;SE;       | 200      | 100      | 0    |          |       |        |             | 34              | 0.71                 | 57             | 0.74                   |                   |               |         |
| Oreomyrrhis eriopoda              | OrEr;  |      |      | В             | KI;FL;NM;    | 200      | 100      | 0    |          |       |        |             | 64              | 0.67                 | 114            | 0.75                   |                   |               |         |
| Oreomyrrhis sessiliflora          | OrSe;  |      |      | В             | NS;WSW;      | 200      | 100      | 0    |          |       |        |             | 11              | 0.91                 | 16             | 0.88                   |                   |               | Y       |
| Orites diversifolius              | OrDi;  |      |      | В             | BL;NS;       | 200      | 100      | 0    |          |       |        |             | 50              | 0.90                 | 100            | 0.90                   |                   |               | Y       |
| Orites milliganii                 | OrMi;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 13              | 0.92                 | 24             | 0.79                   |                   |               | Y       |
| Ornduffia reniformis              | OrRe;  |      |      | В             | BL;WSW;      | 200      | 100      | 0    |          |       |        |             | 74              | 0.43                 | 121            | 0.48                   |                   |               |         |
| Orthoceras strictum               | OrSt;  |      | r    | Р             | 2            | 200      | 100      | 0    |          |       |        |             | 18              | 0.56                 | 20             | 0.55                   |                   |               | ,       |
| Oschatzia saxifraga               | OsSa;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       |        |             | 16              | 1.00                 | 30             | 1.00                   |                   |               | Y       |
| Oxalis magellanica                | OxMa;  |      |      | В             | SE;KI;NM;    | 200      | 100      | 0    |          |       |        |             | 65              | 0.69                 | 113            | 0.77                   |                   |               |         |
| Oxalis radicosa                   | OxRa;  |      |      | В             | FL;SE;       | 200      | 100      | 0    |          |       |        |             | 6               | 0.17                 | 6              | 0.17                   | Р                 |               |         |
| Oxylobium arborescens             | OxAr;  |      |      | В             | KI;FL;SR;SE; | 200      | 100      | 0    |          |       |        |             | 44              | 0.61                 | 72             | 0.61                   |                   |               |         |
| Ozothamnus antennaria             | OzAn;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 35              | 0.66                 | 50             | 0.70                   |                   |               | Y       |
| Ozothamnus argophyllus            | OzAr;  |      |      | В             | KI;NM;       | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               |         |
| Ozothamnus<br>costatifructus      | OzCo;  |      |      | В             | BL;SR;FL;CH; | 200      | 100      | 0    |          |       |        |             | 13              | 0.31                 | 18             | 0.28                   |                   |               | Y       |
| Ozothamnus ericifolius            | OzEr;  |      |      | В             | BL;NS;FL;NM; | 200      | 100      | 0    |          |       |        |             | 13              | 0.77                 | 23             | 0.61                   |                   |               | Y       |
| Ozothamnus hookeri                | OzHo;  |      |      | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 34              | 0.62                 | 75             | 0.79                   |                   |               | Y       |
| Ozothamnus ledifolius             | OzLe;  |      |      | В             | SE;NM;       | 200      | 100      | 0    |          |       |        |             | 20              | 0.80                 | 31             | 0.87                   |                   |               | Y       |
| Ozothamnus<br>Iycopodioides       | OzLy;  |      | r    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 4               | 1.00                 | 16             | 0.69                   |                   |               | Y       |
| Ozothamnus reflexifolius          | OzRe;  | VU   | v    | Р             |              | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |
| Ozothamnus rodwayi                | OzRod; |      |      | В             | SE;          | 200      | 100      | 0    |          |       |        |             | 14              | 1.00                 | 25             | 1.00                   |                   |               | Y       |
| Ozothamnus rodwayi var<br>rodwayi | OzRR;  |      |      | В             | FL;NS;       | 200      | 100      | 0    |          |       |        |             | 33              | 0.94                 | 55             | 0.96                   |                   |               | Y       |

| Species                                      | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Ozothamnus rodwayi var.<br>kingii            | OzRK;  |      |      | В             | SE;                  | 200      | 100      | 0    |          |       |        |             | 5               | 0.80                 | 8              | 0.88                   |                   |               | Y       |
| Ozothamnus<br>rosmarinifolius                | OzRo;  |      |      | В             | KI;NS;FL;NM;         | 200      | 100      | 0    |          |       |        |             | 49              | 0.55                 | 59             | 0.54                   |                   |               |         |
| Ozothamnus scutellifolius                    | OzSc;  |      |      | В             | CH;                  | 200      | 100      | 0    |          |       |        |             | 26              | 0.31                 | 54             | 0.43                   |                   |               | Y       |
| Ozothamnus thyrsoideus                       | OzTh;  |      |      | В             | FL;                  | 200      | 100      | 0    |          |       |        |             | 68              | 0.51                 | 101            | 0.58                   |                   |               |         |
| Ozothamnus turbinatus                        | OzTu;  |      |      | В             | BL;NS;               | 200      | 100      | 0    |          |       |        |             | 33              | 0.79                 | 52             | 0.85                   |                   |               |         |
| Pandorea pandorana                           | PaPa;  | 9    | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 4              | 0.75                   | Р                 |               |         |
| Paracaleana minor                            | PaMi;  |      |      | В             | CH;NS;SR             | 200      | 100      | 0    |          |       |        |             | 19              | 0.58                 | 26             | 0.54                   |                   |               |         |
| Parietaria debilis                           | PaDe;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 12              | 0.58                 | 26             | 0.65                   |                   |               |         |
| Parsonsia brownii                            | PaBr;  |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 61              | 0.67                 | 104            | 0.66                   |                   |               |         |
| Patersonia fragilis                          | PaFr;  |      |      | В             | NS;NM;BL;            | 200      | 100      | 0    |          |       |        |             | 128             | 0.56                 | 257            | 0.61                   |                   |               |         |
| Patersonia occidentalis<br>var. occidentalis | PaOO;  |      |      | В             | СН;                  | 200      | 100      | 0    |          |       |        |             | 33              | 0.70                 | 57             | 0.65                   |                   |               |         |
| Pelargonium inodorum                         | Peln;  |      |      | В             | SR;NS;NM;            | 200      | 100      | 0    |          |       |        |             | 41              | 0.51                 | 57             | 0.51                   |                   |               |         |
| Pelargonium littorale                        | PeLi;  |      |      | В             | SE;SR;KI;FL;W<br>SW; | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 10             | 0.50                   |                   |               |         |
| Pellaea calidirupium                         | PeCa;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 19              | 0.42                 | 32             | 0.44                   |                   |               |         |
| Pellaea falcata                              | PeFa;  |      |      | В             | SR;KI;CH;NM;         | 200      | 100      | 0    |          |       |        |             | 37              | 0.59                 | 53             | 0.60                   |                   |               |         |
| Pentachondra ericifolia                      | PeEr;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 12              | 0.67                 | 19             | 0.68                   |                   |               | Y       |
| Pentachondra involucrata                     | Pelnv; |      |      | В             | KI;BL;               | 200      | 100      | 0    |          |       |        |             | 24              | 0.83                 | 42             | 0.86                   |                   |               | Y       |
| Pentachondra pumila                          | PePum; |      |      | В             | SE;NS;NM;            | 200      | 100      | 0    |          |       |        |             | 54              | 0.85                 | 140            | 0.90                   |                   |               |         |
| Pentapogon quadrifidus                       | PeQu;  |      |      | В             | KI;                  | 200      | 100      | 0    |          |       |        |             | 127             | 0.30                 | 234            | 0.32                   |                   |               |         |
| Pentapogon quadrifidus<br>var parviflorus    | PeQD;  |      |      | В             | КІ;                  | 200      | 100      | 0    |          |       |        |             | 34              | 0.85                 | 42             | 0.83                   |                   |               | Y       |

| Species                                   | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Pentapogon quadrifidus<br>var quadrifidus | PeQQ;  |      |      | В             | КІ;                 | 200      | 100      | 0    |          |       |        |             | 14              | 0.57                 | 16             | 0.56                   |                   |               |         |
| Persicaria decipiens                      | PeDe;  |      | v    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 21              | 0.29                 | 32             | 0.25                   |                   |               |         |
| Persicaria hydropiper                     | PeHy;  |      |      | В             | KI;NS;BL;           | 200      | 100      | 0    |          |       |        |             | 6               | 0.17                 | 10             | 0.10                   | Р                 |               |         |
| Persicaria praetermissa                   | PePra; |      |      | В             | NS;FL;NM;SE;        | 200      | 100      | 0    |          |       |        |             | 9               | 0.33                 | 10             | 0.40                   |                   |               |         |
| Persicaria subsessilis                    | PeSu;  |      | е    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 5               | 0.80                 | 7              | 0.71                   |                   |               |         |
| Persoonia gunnii                          | PeGun; |      |      | В             | BL;CH;NM;NS<br>;    | 200      | 100      | 0    |          |       |        |             | 48              | 0.85                 | 87             | 0.90                   |                   |               | Y       |
| Persoonia moscalii                        | PeMo;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 5              | 1.00                   |                   |               | Y       |
| Persoonia muelleri                        | PeMue; |      |      | В             | SE;                 | 200      | 100      | 0    |          |       |        |             | 11              | 1.00                 | 17             | 1.00                   |                   |               | Y       |
| Persoonia muelleri subsp.<br>angustifolia | PeMu;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 19              | 0.74                 | 30             | 0.67                   |                   |               | Y       |
| Phebalium daviesii                        | PhDa;  | CR   | е    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 4               | 1.00                 | 6              | 0.83                   |                   |               | Y       |
| Pheladenia deformis                       | PhDe;  |      |      | В             | BL;KI;              | 200      | 100      | 0    |          |       |        |             | 23              | 0.43                 | 34             | 0.38                   |                   |               |         |
| Pherosphaera hookeriana                   | PhHo;  |      | v    | Р             |                     | 200      | 100      | 0    |          |       |        | ı           | 12              | 0.92                 | 27             | 0.96                   |                   |               | Y       |
| Philotheca freyciana                      | PhFr;  | EN   | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   |               | Y       |
| Philotheca verrucosa                      | PhVe;  |      |      | В             | SR;KI;NS;FL;        | 200      | 100      | 0    |          |       |        |             | 30              | 0.43                 | 47             | 0.45                   |                   |               |         |
| Philotheca virgata                        | PhVi;  |      |      | В             | BL;NS;FL;BL;        | 200      | 100      | 0    |          |       |        |             | 35              | 0.57                 | 73             | 0.66                   |                   |               |         |
| Phragmites australis                      | PhrAu; |      |      | В             | SR;NS;CH;BL;        | 200      | 100      | 0    |          |       |        |             | 49              | 0.35                 | 65             | 0.29                   |                   |               |         |
| Phyllangium distylis                      | PhDis; |      | r    | Р             |                     | 200      | 200      | 0    |          |       |        |             | 13              | 0.46                 | 17             | 0.59                   |                   |               |         |
| Phyllangium divergens                     | PhDiv; |      | v    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 22              | 0.64                 | 38             | 0.68                   |                   |               |         |
| Phyllanthus australis                     | PhyAu; |      |      | В             | SR;KI;FL;CH;N<br>M; | 200      | 100      | 0    |          |       |        |             | 24              | 0.54                 | 36             | 0.53                   |                   |               |         |
| Phyllocladus aspleniifolius               | PhAs;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 146             | 0.73                 | 391            | 0.76                   |                   |               | Y       |
| Phylloglossum<br>drummondii               | PhDr;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 10              | 0.60                 | 13             | 0.62                   |                   |               |         |

| Species                                       | Code   | EPBC | TSPA | Model<br>type | Bioregions            | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------------|--------|------|------|---------------|-----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Phyllota diffusa                              | PhDif; |      |      | В             | SR;NS;NM;             | 200      | 100      | 0    |          |       |        |             | 13              | 0.62                 | 24             | 0.54                   |                   |               | Y       |
| Picris angustifolia                           | PiAn;  | 0    |      | В             | BL;NM;NS;             | 200      | 100      | 0    |          |       |        |             | 35              | 0.77                 | 53             | 0.77                   |                   |               |         |
| Picris angustifolia subsp.<br>angustifolia    | PiAA;  |      |      | В             | BL;NM;NS;             | 200      | 100      | 0    |          |       |        |             | 24              | 0.71                 | 26             | 0.73                   |                   |               |         |
| Picris angustifolia subsp.<br>merxmuelleri    | PiAM;  |      |      | В             | BL;NM;NS;             | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               |         |
| Pilularia novae-hollandiae                    | PiNo;  |      | r    | Р             |                       | 200      | 100      | 0    |          |       |        |             | 10              | 0.30                 | 11             | 0.27                   |                   |               |         |
| Pimelea axiflora subsp.<br>axiflora           | PiAx;  |      | е    | Р             |                       | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 7              | 0.57                   | Р                 |               |         |
| Pimelea curviflora                            | PiCur; |      | pr   | Р             | BL;NM;                | 200      | 100      | 0    |          |       |        |             | 27              | 0.30                 | 41             | 0.34                   |                   |               |         |
| Pimelea curviflora var.<br>gracilis           | PiCG;  |      | r    | Р             | BL;FL;NM;SR;<br>SE;   | 200      | 100      | 0    |          |       |        |             | 25              | 0.20                 | 40             | 0.22                   |                   |               |         |
| Pimelea curviflora var.<br>sericea            | PiCS;  |      | r    | Р             | FL;NM;                | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 4              | 0.50                   | Р                 |               |         |
| Pimelea filiformis                            | PiFi;  |      |      | В             | FL;                   | 200      | 500      | 0    |          |       |        |             | 13              | 0.46                 | 31             | 0.48                   |                   |               | Y       |
| Pimelea flava subsp. flava                    | PiFF;  |      | r    | Р             |                       | 200      | 100      | 0    |          |       |        |             | 26              | 0.50                 | 64             | 0.44                   |                   |               |         |
| Pimelea glauca                                | PiGla; |      |      | В             | SR;KI;CH;BL;          | 200      | 100      | 0    |          |       |        |             | 46              | 0.43                 | 67             | 0.43                   |                   |               |         |
| Pimelea ligustrina subsp.<br>ligustrina       | PiLL;  |      |      | В             | FL;                   | 200      | 100      | 0    |          |       |        |             | 68              | 0.44                 | 101            | 0.50                   |                   |               |         |
| Pimelea milliganii                            | PiMi;  |      | r    | Р             |                       | 200      | 100      | 0    |          |       |        |             | 6               | 1.00                 | 9              | 1.00                   |                   |               | Y       |
| Pimelea pauciflora                            | PiPa;  |      |      | В             | NM;SE;                | 200      | 500      | 0    |          |       |        |             | 39              | 0.28                 | 80             | 0.30                   |                   |               |         |
| Pimelea pygmaea                               | PiPy;  |      |      | В             | NS;                   | 200      | 100      | 0    |          |       |        |             | 12              | 0.75                 | 20             | 0.70                   |                   |               | Y       |
| Pimelea serpyllifolia<br>subsp. serpyllifolia | PiSS;  |      |      | В             | KI;NS;WSW;;<br>BL;SE; | 200      | 100      | 0    |          |       |        |             | 15              | 0.73                 | 24             | 0.75                   |                   |               |         |
| Planocarpa nitida                             | PlNi;  |      | r    | Р             |                       | 200      | 100      | 0    |          |       |        |             | 7               | 1.00                 | 12             | 1.00                   |                   |               | Y       |
| Planocarpa petiolaris                         | PlPe;  |      |      | В             | NM;NS;                | 200      | 100      | 0    |          |       |        |             | 33              | 0.85                 | 55             | 0.89                   |                   |               | Y       |

| Species                             | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Planocarpa sulcata                  | PlSu;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 10              | 0.90                 | 16             | 0.75                   |                   |               | Y       |
| Plantago antarctica                 | PlAn;  |      |      | В             | SE;BL;              | 200      | 100      | 0    |          |       |        |             | 12              | 0.25                 | 15             | 0.27                   |                   |               |         |
| Plantago bellidioides               | PlBe;  |      |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 10              | 0.70                 | 17             | 0.71                   |                   |               | Y       |
| Plantago daltonii                   | PlDa;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 26              | 0.85                 | 38             | 0.89                   |                   |               | Y       |
| Plantago debilis                    | PlDe;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 14              | 0.79                 | 23             | 0.70                   |                   |               |         |
| Plantago gaudichaudii               | PlGa;  |      | v    | Р             |                     | 200      | 100      | 0    |          |       | 0      |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               |         |
| Plantago glabrata                   | PIGIb; |      |      | В             | WSW;NM;             | 200      | 100      | 0    |          |       | -      |             | 34              | 0.65                 | 59             | 0.75                   |                   |               | Y       |
| Plantago glacialis                  | PIGIc; |      | r    | Р             | SR;WSW;             | 200      | 100      | 0    |          |       |        |             | 6               | 0.83                 | 7              | 0.86                   |                   |               |         |
| Plantago tasmanica                  | PITa;  |      |      | В             | FL;                 | 200      | 100      | 0    |          |       |        |             | 44              | 0.75                 | 70             | 0.77                   |                   |               | Y       |
| Plantago tasmanica var<br>tasmanica | PlTa;  |      |      | В             | FL;                 | 200      | 100      | 0    |          |       |        |             | 44              | 0.75                 | 70             | 0.77                   |                   |               | Y       |
| Plantago tasmanica var.<br>archeri  | PlTa;  |      |      | В             | FL;                 | 200      | 100      | 0    |          |       |        |             | 44              | 0.75                 | 70             | 0.77                   |                   |               | Y       |
| Plantago triantha                   | PlTr;  |      |      | В             | SE;KI;FL;BL;C<br>H; | 200      | 100      | 0    |          |       |        |             | 19              | 0.74                 | 34             | 0.82                   |                   |               |         |
| Platylobium<br>obtusangulum         | PlOb;  |      |      | В             | BL;CH;KI;           | 200      | 100      | 0    |          |       |        |             | 16              | 0.50                 | 28             | 0.61                   |                   |               |         |
| Pleurosorus rutifolius              | PlRu;  |      |      | В             | FL;NM;NS;           | 200      | 100      | 0    |          |       |        |             | 23              | 0.22                 | 30             | 0.23                   |                   |               |         |
| Pneumatopteris<br>pennigera         | PnPe;  |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 12             | 0.50                   |                   |               |         |
| Poa clelandii                       | PoCl;  |      |      | В             | BL;NM;              | 200      | 100      | 0    |          |       |        |             | 37              | 0.54                 | 44             | 0.55                   |                   |               |         |
| Poa fawcettiae                      | PoFa;  |      |      | В             | KI;CH;BL;SR;        | 200      | 100      | 0    |          |       |        |             | 5               | 0.80                 | 7              | 0.86                   |                   |               |         |
| Poa halmaturina                     | РоНа;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 7              | 0.57                   |                   |               |         |
| Poa hiemata                         | PoHi;  |      |      | В             | WSW;BL;SR;          | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 5              | 1.00                   |                   |               |         |
| Poa hookeri                         | РоНо;  |      |      | В             | CH;                 | 200      | 100      | 0    |          |       |        |             | 53              | 0.34                 | 98             | 0.36                   |                   |               |         |
| Poa jugicola                        | PoJu;  |      |      | В             | SE;                 | 200      | 100      | 0    |          |       |        |             | 7               | 0.57                 | 9              | 0.67                   |                   |               | Y       |

| Species                                     | Code  | EPBC | TSPA | Model<br>type | Bioregions        | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------|-------|------|------|---------------|-------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Poa mollis                                  | PoMo; |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 12              | 0.58                 | 23             | 0.61                   |                   |               | Y       |
| Poa poiformis var. ramifer                  | PoPR; |      | r    | Р             | NS;               | 200      | 100      | 0    |          |       |        |             | 11              | 0.64                 | 15             | 0.67                   |                   |               |         |
| Poa rodwayi                                 | PoRo; |      |      | В             | FL;               | 200      | 100      | 0    |          |       |        |             | 160             | 0.44                 | 369            | 0.48                   |                   |               |         |
| Poa tenera                                  | PoTe; |      |      | В             | КІ;               | 200      | 100      | 0    |          |       |        |             | 113             | 0.50                 | 214            | 0.52                   |                   |               |         |
| Podocarpus lawrencei                        | PoLa; |      |      | В             | NM;               | 200      | 100      | 0    |          |       |        |             | 37              | 0.84                 | 58             | 0.86                   |                   |               |         |
| Podolepis jaceoides                         | PoJa; |      |      | В             | KI;NS;FL;WS<br>W; | 200      | 100      | 0    |          |       |        |             | 46              | 0.46                 | 68             | 0.50                   |                   |               |         |
| Polyscias sp. Douglas-<br>Denison           | PoDD; |      | е    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 3              | 1.00                   |                   |               |         |
| Pomaderris apetala<br>subsp. apetala        | PoAA; |      |      | В             | KI;NM;            | 200      | 100      | 0    |          |       |        |             | 93              | 0.73                 | 139            | 0.73                   |                   |               |         |
| Pomaderris apetala<br>subsp. maritima       | PaAM; |      |      | В             | NM;BL;SE;         | 200      | 100      | 0    |          |       |        |             | 9               | 0.44                 | 10             | 0.50                   |                   |               |         |
| Pomaderris aspera                           | PoAs; |      |      | В             | SR;NS;WSW;<br>CH; | 200      | 100      | 0    |          |       |        |             | 30              | 0.53                 | 43             | 0.51                   |                   |               |         |
| Pomaderris elachophylla                     | PoEl; |      | v    | Р             |                   | 200      | 500      | 0    | Y        |       |        |             | 13              | 0.31                 | 33             | 0.21                   |                   |               |         |
| Pomaderris elliptica var<br>diemenica       | PoED; |      |      | В             | SR;NS;BL;NM;      | 200      | 100      | 0    |          |       |        |             | 20              | 0.45                 | 23             | 0.52                   |                   |               | Y       |
| Pomaderris elliptica var<br>elliptica       | PoEE; |      |      | В             | KI;WSW;NM;        | 200      | 100      | 0    |          |       |        |             | 49              | 0.57                 | 75             | 0.64                   |                   |               |         |
| Pomaderris intermedia                       | Poln; |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 24              | 0.29                 | 36             | 0.33                   |                   |               |         |
| Pomaderris oraria                           | PoOr; |      | pr   | Р             |                   | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 7              | 0.57                   |                   |               |         |
| Pomaderris oraria subsp.<br>oraria          | PoOr; |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 7              | 0.57                   |                   |               |         |
| Pomaderris paniculosa<br>subsp. paralia     | PoPa; |      | r    | Р             |                   | 200      | 100      | 0    |          |       |        |             | 9               | 0.33                 | 21             | 0.57                   |                   |               |         |
| Pomaderris phylicifolia<br>subsp. ericoides | PoPE; |      | pr   | Р             |                   | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |

| Species                                        | Code   | EPBC | TSPA | Model<br>type | Bioregions             | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------------|--------|------|------|---------------|------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Pomaderris phylicifolia<br>subsp. phylicifolia | PoPh;  |      | pr   | Р             |                        | 200      | 500      | 0    | Y        |       |        |             | 22              | 0.45                 | 48             | 0.35                   |                   |               |         |
| Pomaderris pilifera subsp.<br>pilifera         | PoPP;  |      |      | В             | КІ;                    | 200      | 100      | 0    |          |       |        |             | 80              | 0.55                 | 155            | 0.61                   |                   |               |         |
| Pomaderris pilifera subsp.<br>talpicutica      | PoPT;  | VU   | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 4              | 1.00                   |                   |               | Y       |
| Pomaderris racemosa                            | PoRa;  |      |      | В             | NS;NM;SR;              | 200      | 100      | 0    |          |       |        |             | 23              | 0.43                 | 33             | 0.42                   |                   |               |         |
| Poranthera petalifera                          | PoPe;  | VU   | v    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 3              | 1.00                   |                   |               | Y       |
| Portulaca oleracea                             | PoOl;  |      |      | В             | FL;SE;                 | 200      | 100      | 0    |          |       |        |             | 6               | 0.00                 | 6              | 0.00                   | Р                 |               |         |
| Potamogeton<br>australiensis                   | PoAu;  |      |      | В             | NS;CH;NM;              | 200      | 100      | 0    |          |       |        |             | 27              | 0.44                 | 35             | 0.54                   |                   |               |         |
| Potamogeton crispus                            | PoCr;  |      |      | В             | SE;SR;NM;              | 200      | 100      | 0    |          |       |        |             | 4               | 0.00                 | 5              | 0.00                   | Р                 |               | ,       |
| Potamogeton ochreatus                          | PoOc;  |      |      | В             | SR;KI;NS;FL;C<br>H;NM; | 200      | 100      | 0    |          |       |        |             | 27              | 0.26                 | 33             | 0.27                   |                   |               |         |
| Potamogeton perfoliatus                        | PoPer; |      |      | В             | CH;                    | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   |               |         |
| Potamogeton tricarinatus                       | PoTr;  |      |      | В             | FL;WSW;NM;             | 200      | 100      | 0    |          |       |        |             | 34              | 0.35                 | 49             | 0.33                   |                   |               |         |
| Prasophyllum alpinum                           | PrAl;  |      |      | В             | KI;NS;                 | 200      | 100      | 0    |          |       |        |             | 27              | 0.89                 | 37             | 0.89                   |                   |               | Y       |
| Prasophyllum amoenum                           | PrAm;  | EN   | v    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 9              | 1.00                   |                   |               | Y       |
| Prasophyllum<br>apoxychilum                    | PrAp;  | EN   | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 14              | 0.57                 | 22             | 0.64                   |                   |               | Y       |
| Prasophyllum atratum                           | PrAt;  | CR   | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               | Y       |
| Prasophyllum australe                          | PrAu;  |      |      | В             | NS;NM;                 | 200      | 100      | 0    |          |       |        |             | 46              | 0.63                 | 61             | 0.61                   |                   |               |         |
| Prasophyllum brevilabre                        | PrBr;  |      |      | В             | CH;                    | 200      | 100      | 0    |          |       |        |             | 36              | 0.47                 | 59             | 0.51                   |                   |               |         |
| Prasophyllum castaneum                         | PrCa;  | CR   | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 4              | 1.00                   |                   |               | Y       |
| Prasophyllum crebriflorum                      | PrCr;  | EN   | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 5               | 0.20                 | 10             | 0.10                   | Р                 |               | Y       |

| Species                          | Code   | EPBC | TSPA | Model<br>type | Bioregions              | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------|--------|------|------|---------------|-------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Prasophyllum elatum              | PrEl;  |      |      | В             | KI;WSW;CH;B<br>L;       | 200      | 100      | 0    |          |       |        |             | 26              | 0.58                 | 37             | 0.57                   | -                 |               |         |
| Prasophyllum favonium            | PrFa;  | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 6              | 1.00                   |                   |               | Y       |
| Prasophyllum flavum              | PrFl;  |      |      | В             | KI;FL;WSW;N<br>M;BL;    | 200      | 100      | 0    |          |       |        |             | 13              | 0.38                 | 14             | 0.36                   |                   |               |         |
| Prasophyllum incorrectum         | Prlnc; | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 4              | 1.00                   |                   |               | Y       |
| Prasophyllum incurvum            | Prln;  | 2    |      | В             | SE;SR;                  | 200      | 100      | 0    |          |       |        |             | 11              | 0.73                 | 14             | 0.79                   |                   |               | Y       |
| Prasophyllum limnetes            | PrLi;  | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 0.50                   | Р                 |               | Y       |
| Prasophyllum lindleyanum         | PrLin; | 9    |      | В             | KI;NS;FL;WS<br>W;NM;BL; | 200      | 100      | 0    |          |       |        |             | 12              | 0.42                 | 20             | 0.50                   |                   | 6             | 2       |
| Prasophyllum milfordense         | PrMi;  | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               | Y       |
| Prasophyllum mimulum             | PrMim; |      |      | В             | BL;SE;NS;WS<br>W;       | 200      | 100      | 0    |          |       |        |             | 6               | 1.00                 | 9              | 0.89                   |                   |               | Y       |
| Prasophyllum olidum              | PrOl;  | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |
| Prasophyllum<br>perangustum      | PrPe;  | CR   | е    | Р             |                         | 200      | 500      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |
| Prasophyllum pulchellum          | PrPu;  | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 11              | 1.00                 | 17             | 1.00                   |                   |               | Y       |
| Prasophyllum robustum            | PrRob; | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 3              | 0.67                   |                   |               | Y       |
| Prasophyllum rostratum           | PrRos; |      |      | Р             |                         | 200      | 100      | 0    |          |       |        |             | 22              | 0.64                 | 31             | 0.71                   |                   |               | Y       |
| Prasophyllum secutum             | PrSe;  | EN   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 10              | 0.60                 | 11             | 0.55                   |                   |               | Y       |
| Prasophyllum sp. Arthurs<br>Lake | PrALk; |      | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               |         |
| Prasophyllum stellatum           | PrSt;  | CR   | е    | Р             |                         | 200      | 500      | 0    |          |       |        |             | 3               | 0.33                 | 6              | 0.17                   | Р                 |               | Y       |
| Prasophyllum<br>tadgellianum     | PrTa;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 4              | 0.75                   |                   |               |         |
| Prasophyllum taphanyx            | PrTap; | CR   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               | Y       |

| Species                                  | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Prasophyllum truncatum                   | PrTr;  |      |      | В             | KI;WSW;CH;N<br>M;   | 200      | 100      | 0    |          |       |        |             | 14              | 0.71                 | 17             | 0.76                   |                   |               | Y       |
| Prasophyllum<br>tunbridgense             | PrTu;  | EN   | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 6              | 0.83                   |                   |               | Y       |
| Prionotes cerinthoides                   | PrCe;  |      |      | В             | KI;NS;              | 200      | 100      | 0    |          |       |        |             | 42              | 0.90                 | 85             | 0.89                   |                   |               | Y       |
| Prostanthera rotundifolia                | PrRot; |      | v    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 9               | 0.44                 | 19             | 0.32                   |                   |               |         |
| Pseudocephalozia<br>paludicola           | PsPa;  | VU   |      | Р             |                     | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Pteris comans                            | PtCom; |      |      | В             | FL;CH;              | 200      | 100      | 0    |          |       |        |             | 28              | 0.79                 | 30             | 0.80                   |                   |               |         |
| Pteris tremula                           | PtTr;  |      |      | В             | NS;FL;WSW;<br>NM;   | 200      | 100      | 0    |          |       |        |             | 21              | 0.62                 | 29             | 0.62                   |                   |               |         |
| Pterostylis alata                        | PtAl;  |      |      | В             | SR;BL;KI;           | 200      | 100      | 0    |          |       |        |             | 22              | 0.36                 | 34             | 0.32                   |                   |               | Y       |
| Pterostylis aphylla                      | PtAp;  |      |      | В             | BL;FL;NS;           | 200      | 100      | 0    |          |       |        |             | 26              | 0.58                 | 33             | 0.55                   |                   |               | Y       |
| Pterostylis atrans                       | PtAtn; |      |      | В             | CH;FL;SR;           | 200      | 100      | 0    |          |       |        |             | 13              | 0.69                 | 18             | 0.61                   |                   |               |         |
| Pterostylis atriola                      | PtAt;  | EN   | r    | Р             |                     | 200      | 500      | 0    |          |       |        |             | 12              | 0.75                 | 23             | 0.74                   |                   |               | Y       |
| Pterostylis commutata                    | PtCo;  | CR   | e    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 10             | 0.30                   | Р                 |               | Y       |
| Pterostylis concinna                     | PtCon; |      |      | В             | FL;NM;NS;           | 200      | 100      | 0    |          |       |        |             | 17              | 0.24                 | 28             | 0.21                   |                   |               |         |
| Pterostylis cucullata subsp<br>cucullata | PtCC;  | VU   | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 16             | 0.56                   |                   |               |         |
| Pterostylis curta                        | PtCur; |      |      | В             | KI;NS;BL;           | 200      | 100      | 0    |          |       |        |             | 13              | 0.62                 | 19             | 0.47                   |                   |               |         |
| Pterostylis dubia                        | PtDu;  |      |      | В             | NS;                 | 200      | 100      | 0    |          |       |        |             | 14              | 0.93                 | 18             | 0.89                   |                   |               | Y       |
| Pterostylis falcata                      | PtFa;  |      | е    | Р             | NS;                 | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Pterostylis furcata                      | PtFu;  |      |      | В             | KI;CH;NM;BL;<br>SR; | 200      | 100      | 0    |          |       |        |             | 6               | 0.33                 | 6              | 0.33                   |                   |               | Y       |
| Pterostylis grandiflora                  | PtGr;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 11              | 0.36                 | 20             | 0.50                   |                   |               |         |
| Pterostylis lustra                       | PtLu;  |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |

| Species                                | Code   | EPBC   | TSPA  | Model<br>type | Bioregions   | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|----------------------------------------|--------|--------|-------|---------------|--------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Pterostylis melagramma                 | PtMe;  |        |       | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 69              | 0.54                 | 99             | 0.54                   |                   |               |         |
| Pterostylis mutica                     | PtMu;  |        |       | В             | NM;SE;       | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Pterostylis nutans                     | PtNu;  |        |       | В             | CH;          | 200      | 100      | 0    |          |       |        |             | 103             | 0.51                 | 169            | 0.51                   |                   |               |         |
| Pterostylis pedoglossa                 | PtPe;  |        |       | В             | BL;NM;       | 200      | 100      | 0    |          |       |        |             | 21              | 0.57                 | 31             | 0.65                   |                   |               |         |
| Pterostylis pratensis                  | PtPr;  | VU     | v     | Р             |              | 200      | 100      | 0    |          |       |        |             | 7               | 0.14                 | 15             | 0.13                   | Р                 |               | Y       |
| Pterostylis rubenachii                 | PtRu;  | EN     | е     | Р             |              | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               | Y       |
| Pterostylis sanguinea                  | PtSa;  |        | r     | Р             |              | 200      | 500      | 0    |          |       | -      |             | 6               | 0.33                 | 11             | 0.36                   |                   |               |         |
| Pterostylis scabrida                   | PtSc;  |        |       | В             | FL;          | 200      | 100      | 0    |          |       |        |             | 26              | 0.77                 | 30             | 0.77                   |                   |               | Y       |
| Pterostylis squamata                   | PtSq;  |        | r     | Р             |              | 200      | 100      | 0    |          |       |        |             | 15              | 0.40                 | 20             | 0.35                   |                   |               |         |
| Pterostylis stenochila                 | PtSt;  | -      |       | В             | BL;CH;FL;NM; | 200      | 100      | 0    |          |       |        |             | 13              | 0.62                 | 19             | 0.58                   |                   |               | Y       |
| Pterostylis tasmanica                  | PtTa;  |        |       | В             | SR;BL;WSW;   | 200      | 100      | 0    |          |       |        |             | 19              | 0.63                 | 28             | 0.71                   |                   |               |         |
| Pterostylis tunstallii                 | PtTu;  |        | е     | Р             |              | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Pterostylis wapstrarum                 | PtWa;  | CR     | е     | Р             |              | 200      | 100      | 0    |          |       |        |             | 3               | 0.00                 | 7              | 0.00                   | Р                 |               | Y       |
| Pterostylis williamsonii               | PtWi;  | -      |       | В             | NM;NS;SR;    | 200      | 100      | 0    |          |       | ō      |             | 14              | 0.64                 | 24             | 0.58                   |                   |               | Y       |
| Pterostylis ziegeleri                  | PtZi;  | VU     | v     | Р             |              | 200      | 100      | 0    |          |       |        |             | 20              | 0.50                 | 38             | 0.58                   |                   |               | Y       |
| Pterygopappus lawrencei                | PtLa;  | -      |       | В             | BL;SE;       | 200      | 100      | 0    |          |       |        |             | 17              | 1.00                 | 35             | 1.00                   |                   |               | Y       |
| Ptilotus spathulatus                   | PtSp;  |        |       | В             | FL;          | 200      | 100      | 0    |          |       |        |             | 28              | 0.21                 | 58             | 0.22                   |                   |               |         |
| Ptilotus spathulatus f.<br>spathulatus | PtSp;  |        |       | В             | FL;          | 200      | 100      | 0    |          |       | 3      |             | 28              | 0.21                 | 58             | 0.22                   |                   |               |         |
| Puccinellia perlaxa                    | PuPer; |        | r     | Р             |              | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               |         |
| Puccinellia stricta                    | PuSt;  |        |       | В             | NM;          | 200      | 100      | 0    |          |       |        |             | 21              | 0.24                 | 27             | 0.26                   |                   |               |         |
| Pultenaea dentata                      | PuDe;  |        |       | В             | NM;NS;       | 200      | 100      | 0    |          |       |        |             | 71              | 0.63                 | 114            | 0.64                   |                   |               |         |
| Pultenaea fasciculata                  | PuFa;  |        | 0<br> | В             | NS;SR;       | 200      | 100      | 0    |          |       | 0      |             | 14              | 0.64                 | 24             | 0.75                   |                   |               | ,       |
| Pultenaea humilis                      | PuHu;  | -<br>- | v     | Р             |              | 200      | 500      | 0    |          |       |        |             | 8               | 0.88                 | 12             | 0.83                   |                   |               |         |

| Species                            | Code   | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------|--------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Pultenaea mollis                   | PuMo;  |      | v    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 13             | 0.54                   |                   |               |         |
| Pultenaea pedunculata              | PuPe;  |      |      | В             | SR;CH;FL;NS;                         | 200      | 100      | 0    |          |       |        |             | 47              | 0.51                 | 92             | 0.43                   |                   |               |         |
| Pultenaea prostrata                | PuPr;  |      | v    | Р             |                                      | 200      | 500      | 0    |          |       |        |             | 19              | 0.37                 | 29             | 0.38                   |                   |               |         |
| Pultenaea sericea                  | PuSe;  |      | v    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 4               | 1.00                 | 9              | 0.67                   |                   |               |         |
| Pultenaea tenuifolia               | PuTe;  |      |      | В             | CH;NM;BL;SE;                         | 200      | 100      | 0    |          |       |        |             | 10              | 0.70                 | 16             | 0.75                   |                   |               |         |
| Ranunculus acaulis                 | RaAc;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 9               | 1.00                 | 20             | 1.00                   |                   |               |         |
| Ranunculus amphitrichus            | RaAm;  |      |      | В             | NM;NS;                               | 200      | 100      | 0    |          |       |        |             | 76              | 0.46                 | 112            | 0.43                   |                   |               |         |
| Ranunculus collicola               | RaCo;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               | Y       |
| Ranunculus collinus                | RaCol; |      |      | В             | NS;                                  | 200      | 100      | 0    |          |       |        |             | 19              | 0.74                 | 29             | 0.76                   |                   |               |         |
| Ranunculus decurvus                | RaDe;  |      |      | В             | WSW;NM;                              | 200      | 100      | 0    |          |       |        |             | 30              | 0.40                 | 50             | 0.48                   |                   |               | Y       |
| Ranunculus diminutus               | RaDi;  |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Ranunculus glabrifolius            | RaGl;  |      |      | В             | NM;FL;WSW;                           | 200      | 100      | 0    |          |       |        |             | 38              | 0.63                 | 58             | 0.66                   |                   |               |         |
| Ranunculus gunnianus               | RaGu;  |      |      | В             | NS;BL;SR;SE;                         | 200      | 100      | 0    |          |       |        |             | 8               | 0.88                 | 9              | 0.89                   |                   |               |         |
| Ranunculus jugosus                 | RaJu;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 6               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Ranunculus lappaceus               | RaLa;  |      |      | В             | KI;                                  | 200      | 100      | 0    |          |       |        |             | 109             | 0.49                 | 203            | 0.47                   |                   |               |         |
| Ranunculus pascuinus               | RaPa;  |      |      | В             | WSW;BL;                              | 200      | 100      | 0    |          |       |        |             | 12              | 0.75                 | 23             | 0.74                   |                   |               | Y       |
| Ranunculus<br>pimpinellifolius     | RaPi;  |      |      | В             | NS;NM;                               | 200      | 100      | 0    |          |       |        |             | 17              | 0.29                 | 22             | 0.32                   |                   |               |         |
| Ranunculus prasinus                | RaPr;  | EN   | е    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 7               | 0.86                 | 9              | 0.78                   |                   |               | Y       |
| Ranunculus pumilio var.<br>pumilio | RaPP;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 14              | 0.21                 | 22             | 0.18                   |                   |               |         |
| Ranunculus scapiger                | RaSc;  |      |      | В             | FL;                                  | 200      | 100      | 0    |          |       |        |             | 61              | 0.61                 | 124            | 0.62                   |                   |               |         |

| Species                                        | Code  | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------------|-------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Ranunculus sessiliflorus<br>var. sessiliflorus | RaSe; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 31              | 0.45                 | 55             | 0.47                   |                   |               |         |
| Ranunculus triplodontus                        | RaTr; |      |      | В             | NS;NM;BL;                            | 200      | 100      | 0    |          |       |        |             | 18              | 0.72                 | 24             | 0.67                   |                   |               | Y       |
| Rhagodia candolleana<br>subsp. candolleana     | RhCC; |      |      | В             | NS;                                  | 200      | 100      | 0    |          |       |        |             | 54              | 0.52                 | 98             | 0.53                   |                   |               |         |
| Rhodanthe anthemoides                          | RhAn; |      | r    | Р             |                                      | 200      | 500      | 0    |          |       |        |             | 9               | 0.44                 | 21             | 0.62                   |                   |               |         |
| Rhytidosporum<br>inconspicuum                  | Rhln; |      | е    | Р             |                                      | 200      | 100      | 0    | -        |       |        |             | 8               | 0.25                 | 12             | 0.33                   | Р                 |               |         |
| Richea acerosa                                 | RiAc; |      |      | В             | NS;WSW;NM;                           | 200      | 100      | 0    |          |       |        |             | 28              | 0.64                 | 77             | 0.78                   |                   |               | Y       |
| Richea dracophylla                             | RiDr; |      |      | В             | BL;                                  | 200      | 100      | 0    |          |       |        |             | 16              | 0.69                 | 28             | 0.79                   |                   |               | Y       |
| Richea gunnii                                  | RiGu; |      |      | В             | SE;NS;WSW;<br>NM;                    | 200      | 100      | 0    |          |       |        |             | 39              | 0.79                 | 77             | 0.81                   |                   |               | Y       |
| Richea milliganii                              | RiMi; |      |      | В             | NS;SE;                               | 200      | 100      | 0    |          |       |        |             | 20              | 1.00                 | 33             | 1.00                   |                   |               | Y       |
| Richea procera                                 | RiPr; |      |      | В             | BL;NM;                               | 200      | 100      | 0    |          |       |        |             | 57              | 0.63                 | 107            | 0.67                   |                   |               | Y       |
| Richea scoparia                                | RiSc; |      |      | В             | SE;NM;                               | 200      | 100      | 0    |          |       |        |             | 57              | 0.93                 | 141            | 0.94                   |                   |               | Y       |
| Richea sprengelioides                          | RiSp; |      |      | В             | NM;                                  | 200      | 100      | 0    |          |       |        |             | 52              | 0.90                 | 111            | 0.91                   |                   |               | Y       |
| Richea Xcurtisiae                              | RiXC; |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 13              | 0.92                 | 17             | 0.94                   |                   |               | Y       |
| Rorippa dictyosperma                           | RoDi; |      |      | В             | KI;NS;FL;NM;                         | 200      | 100      | 0    |          |       |        |             | 15              | 0.67                 | 21             | 0.67                   |                   |               |         |
| Rorippa gigantea                               | RoGi; |      |      | В             | SR;KI;FL;WS<br>W;                    | 200      | 100      | 0    |          |       |        |             | 11              | 0.73                 | 14             | 0.79                   |                   |               |         |
| Rumex bidens                                   | RuBi; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 10             | 0.40                   |                   |               |         |
| Rumex brownii                                  | RuBr; |      |      | В             | BL;NS;NM;                            | 200      | 100      | 0    |          |       |        |             | 59              | 0.25                 | 85             | 0.33                   |                   |               |         |
| Rumex dumosus                                  | RuDu; |      |      | В             | SE;BL;CH;                            | 200      | 100      | 0    |          |       |        |             | 24              | 0.17                 | 33             | 0.15                   |                   |               |         |
| Ruppia megacarpa                               | RuMe; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 9               | 0.89                 | 10             | 0.80                   |                   |               |         |

| Species                      | Code   | EPBC | TSPA | Model<br>type | Bioregions              | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------|--------|------|------|---------------|-------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Ruppia polycarpa             | RuPo;  |      |      | В             | KI;NM;                  | 200      | 100      | 0    |          |       |        |             | 31              | 0.26                 | 38             | 0.32                   |                   |               |         |
| Ruppia tuberosa              | RuTu;  |      | r    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 0               |                      | 0              |                        | Р                 |               |         |
| Rytidosperma<br>caespitosum  | Ryce;  |      |      | В             | BL;KI'WSW;              | 200      | 100      | 0    |          |       |        |             | 121             | 0.30                 | 234            | 0.31                   |                   |               |         |
| Rytidosperma carphoides      | AuCa;  |      |      | В             | BL;CH;KI;NS;S<br>R;     | 200      | 100      | 0    |          |       |        |             | 41              | 0.17                 | 65             | 0.20                   |                   |               |         |
| Rytidosperma<br>diemenicum   | AuDi;  |      |      | В             | WSW;NM;                 | 200      | 100      | 0    |          |       |        |             | 30              | 0.77                 | 48             | 0.81                   |                   |               | Y       |
| Rytidosperma dimidiatum      | RyDi;  |      |      | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 75              | 0.44                 | 112            | 0.41                   |                   |               |         |
| Rytidosperma<br>geniculatum  | AuGe;  |      |      | В             | FL;KI;NM;               | 200      | 100      | 0    |          |       |        |             | 16              | 0.38                 | 19             | 0.37                   |                   |               |         |
| Rytidosperma gracile         | NoGr;  |      |      | В             | BL;                     | 200      | 100      | 0    |          |       |        |             | 64              | 0.48                 | 82             | 0.51                   |                   |               |         |
| Rytidosperma indutum         | Auln;  |      | r    | Р             | NM;NS;SR;               | 200      | 100      | 0    |          |       |        |             | 29              | 0.14                 | 52             | 0.19                   | Р                 |               |         |
| Rytidosperma laeve           | AuLa;  |      |      | В             | FL;                     | 200      | 100      | 0    |          |       |        |             | 102             | 0.35                 | 186            | 0.33                   |                   |               |         |
| Rytidosperma nitens          | RyNi;  |      |      | В             | NS;BL;SR;SE;            | 200      | 100      | 0    |          |       |        |             | 21              | 0.76                 | 29             | 0.83                   |                   |               | Y       |
| Rytidosperma nivicola        | RyNiv; |      |      | В             | SE;                     | 200      | 100      | 0    |          |       |        |             | 16              | 0.69                 | 21             | 0.76                   |                   |               |         |
| Rytidosperma nudiflorum      | RyNu;  |      |      | В             | NM;SE;                  | 200      | 100      | 0    |          |       |        |             | 39              | 0.72                 | 60             | 0.78                   |                   |               |         |
| Rytidosperma pilosum         | AuPi;  |      |      | В             | KI;WSW;                 | 200      | 100      | 0    |          |       |        |             | 145             | 0.34                 | 296            | 0.36                   |                   |               |         |
| Rytidosperma popinensis      | RyPo;  | EN   | r    | Р             | NM;SE;SR;               | 200      | 100      | 0    |          |       |        |             | 12              | 0.00                 | 27             | 0.00                   | Р                 |               | Y       |
| Rytidosperma remotum         | AuRe;  |      | r    | Р             | WSW;                    | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |
| Rytidosperma<br>semiannulare | RySe;  |      |      | В             | SR;NS;FL;WS<br>W;NM;BL; | 200      | 100      | 0    |          |       |        |             | 46              | 0.41                 | 59             | 0.47                   |                   |               |         |
| Rytidosperma tenuius         | AuTe;  |      |      | В             | SR;WSW;                 | 200      | 100      | 0    |          |       |        |             | 70              | 0.36                 | 108            | 0.34                   |                   |               |         |
| Sagina diemensis             | SaDi;  | EN   | е    | Р             |                         | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               | Y       |
| Sagina namadgi               | SaNa;  |      |      | В             | KI;                     | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |

| Species                                         | Code   | EPBC | TSPA | Model<br>type | Bioregions   | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-------------------------------------------------|--------|------|------|---------------|--------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Samolus repens var<br>repens                    | SaRe;  |      |      | В             | CH;NS;       | 200      | 100      | 0    |          |       |        |             | 74              | 0.55                 | 111            | 0.57                   |                   |               |         |
| Sarcochilus australis                           | SaAu;  |      |      | В             | NS;WSW;      | 200      | 100      | 0    |          |       |        |             | 25              | 0.84                 | 37             | 0.78                   |                   |               |         |
| Sarcocornia blackiana                           | SaBl;  |      |      | В             | KI;NS;FL;    | 200      | 100      | 0    |          |       |        |             | 7               | 0.14                 | 9              | 0.22                   | Р                 |               |         |
| Sarcocornia quinqueflora                        | SaQu;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       |        |             | 59              | 0.47                 | 79             | 0.49                   |                   |               |         |
| Sarcocornia quinqueflora<br>subsp. quinqueflora | SaQQ;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       |        |             | 11              | 0.73                 | 14             | 0.71                   |                   |               |         |
| Sarcocornia quinqueflora<br>subsp. tasmanica    | SaQT;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               |         |
| Saxipoa saxicola                                | SaSa;  |      |      | В             | BL;WSW;      | 200      | 100      | 0    |          |       |        |             | 22              | 0.77                 | 42             | 0.86                   |                   |               |         |
| Scaevola aemula                                 | ScAe;  |      | е    | Р             |              | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 7              | 0.86                   |                   |               |         |
| Scaevola albida                                 | ScAl;  |      | v    | Р             | KI;          | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 7              | 0.57                   |                   |               |         |
| Scaevola hookeri                                | ScHo;  |      |      | В             | KI;NM;       | 200      | 100      | 0    |          |       |        |             | 46              | 0.67                 | 55             | 0.73                   |                   |               |         |
| Schenkia australis                              | ScAu;  |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 20              | 0.55                 | 23             | 0.61                   |                   |               |         |
| Schizacme archeri                               | ScAr;  |      |      | В             | SE;          | 200      | 100      | 0    |          |       |        |             | 26              | 0.96                 | 44             | 0.98                   |                   |               | Y       |
| Schizacme montana                               | ScMo;  |      |      | В             | SE;NS;BL;    | 200      | 100      | 0    |          |       |        |             | 54              | 0.96                 | 105            | 0.98                   |                   |               |         |
| Schizaea asperula                               | ScAs;  |      |      | В             | NS;FL;BL;    | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 4              | 0.50                   |                   |               |         |
| Schizaea bifida                                 | ScBf;  |      |      | В             | NS;WSW;BL;   | 200      | 100      | 0    |          |       |        |             | 16              | 0.63                 | 19             | 0.68                   |                   |               |         |
| Schizaea fistulosa                              | ScFi;  |      |      | В             | NS;          | 200      | 100      | 0    |          |       |        |             | 43              | 0.65                 | 62             | 0.71                   |                   |               |         |
| Schoenoplectus pungens                          | ScPu;  |      |      | В             | BL;NM;       | 200      | 100      | 0    |          |       |        |             | 26              | 0.46                 | 36             | 0.47                   |                   |               |         |
| Schoenoplectus<br>tabernaemontani               | ScTa;  |      | r    | Р             |              | 200      | 500      | 0    | Y        |       |        |             | 5               | 0.20                 | 9              | 0.11                   | Р                 |               |         |
| Schoenus absconditus                            | ScAb;  |      |      | В             | SR;FL;CH;BL; | 200      | 100      | 0    |          |       |        |             | 37              | 0.16                 | 65             | 0.18                   |                   |               | Y       |
| Schoenus brevifolius                            | SchBr; |      | r    | Р             |              | 200      | 100      | 0    |          |       |        |             | 6               | 0.83                 | 7              | 0.86                   |                   |               |         |
| Schoenus calyptratus                            | SchCa; |      |      | В             | SE;NS;       | 200      | 100      | 0    |          |       |        |             | 24              | 0.83                 | 38             | 0.87                   |                   |               |         |

| Species                  | Code   | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------|--------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Schoenus carsei          | ScCar; |      |      | В             | FL;BL;SR;SE;                         | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 6              | 0.50                   |                   |               |         |
| Schoenus fluitans        | SchFl; |      |      | В             | NM;BL;SR;                            | 200      | 100      | 0    |          |       |        |             | 37              | 0.68                 | 54             | 0.61                   |                   |               |         |
| Schoenus latelaminatus   | SchLa; |      | e    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 8              | 0.88                   |                   |               |         |
| Schoenus maschalinus     | ScMa;  |      |      | В             | NM;                                  | 200      | 100      | 0    |          |       |        | -           | 64              | 0.47                 | 95             | 0.53                   |                   |               |         |
| Schoenus nitens          | ScNi;  |      |      | В             | NS;CH;                               | 200      | 100      | 0    |          |       |        | -           | 80              | 0.59                 | 146            | 0.61                   |                   |               |         |
| Schoenus tesquorum       | ScTe;  |      |      | В             | BL;KI;WSW;N<br>M;                    | 200      | 100      | 0    |          |       |        |             | 39              | 0.56                 | 50             | 0.60                   |                   |               |         |
| Schoenus turbinatus      | ScTu;  |      |      | В             | FL;WSW;CH;                           | 200      | 100      | 0    |          |       |        |             | 6               | 0.33                 | 6              | 0.33                   |                   |               |         |
| Scleranthus brockiei     | SclBr; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 41              | 0.37                 | 71             | 0.30                   |                   |               |         |
| Scleranthus diander      | ScDi;  |      | v    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 18             | 0.50                   |                   |               |         |
| Scleranthus fasciculatus | ScFa;  |      | v    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 41              | 0.32                 | 78             | 0.26                   |                   |               |         |
| Scutellaria humilis      | ScHu;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 9               | 0.33                 | 12             | 0.42                   |                   |               |         |
| Sebaea albidiflora       | SeAl;  |      | 9    | В             | NM;                                  | 200      | 100      | 0    |          |       |        |             | 18              | 0.50                 | 23             | 0.57                   |                   |               |         |
| Selaginella gracillima   | SeGr;  |      |      | В             | NM;                                  | 200      | 100      | 0    |          |       |        |             | 7               | 1.00                 | 9              | 1.00                   |                   |               |         |
| Selaginella uliginosa    | SeUl;  |      |      | В             | CH;NM;                               | 200      | 100      | 0    |          |       |        |             | 132             | 0.66                 | 292            | 0.66                   |                   |               |         |
| Selliera radicans        | SeRa;  |      |      | В             | CH;NS;                               | 200      | 100      | 0    |          |       |        |             | 81              | 0.52                 | 138            | 0.54                   |                   |               |         |
| Senecio albogilvus       | SenAl; |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 7               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Senecio biserratus       | SeBi;  |      |      | В             | NM;                                  | 200      | 100      | 0    |          |       |        |             | 92              | 0.53                 | 134            | 0.54                   |                   |               |         |
| Senecio campylocarpus    | SeCa;  |      |      | В             | NM;                                  | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Senecio extensus         | SeEx;  |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               |         |
| Senecio glomeratus       | SeGl;  |      |      | В             | BL;CH;SR;                            | 200      | 100      | 0    |          |       |        |             | 76              | 0.25                 | 124            | 0.29                   |                   |               |         |

| Species                                    | Code  | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------------------------|-------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Senecio glomeratus subsp.<br>glomeratus    | SeGl; |      |      | В             | BL;CH;SR;                            | 200      | 100      | 0    |          |       |        |             | 76              | 0.25                 | 124            | 0.29                   |                   |               |         |
| Senecio glomeratus subsp.<br>Iongifructus  | SeGl; |      |      | В             | BL;CH;SR;                            | 200      | 100      | 0    |          |       |        |             | 76              | 0.25                 | 124            | 0.29                   |                   |               |         |
| Senecio gunnii                             | SeGu; |      |      | В             | FL;NM;                               | 200      | 100      | 0    |          |       |        |             | 64              | 0.59                 | 128            | 0.63                   |                   |               |         |
| Senecio hispidissimus                      | SeHi; |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 3              | 1.00                   |                   |               |         |
| Senecio leptocarpus                        | SeLe; |      |      | В             | SE;                                  | 200      | 100      | 0    |          |       |        |             | 29              | 0.97                 | 46             | 0.98                   |                   |               | Y       |
| Senecio linearifolius var.<br>arachnoideus | SeLA; |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Senecio microbasis                         | SeMi; |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 5               | 0.40                 | 7              | 0.43                   |                   |               |         |
| Senecio odoratus                           | SeOd; |      |      | В             | SR;                                  | 200      | 100      | 0    |          |       |        |             | 18              | 0.78                 | 24             | 0.79                   |                   |               |         |
| Senecio pectinatus var<br>pectinatus       | SePP; |      |      | В             | NS;FL;BL;                            | 200      | 100      | 0    |          |       |        |             | 16              | 1.00                 | 19             | 1.00                   |                   |               | Y       |
| Senecio prenanthoides                      | SePr; |      |      | В             | BL;NS;CH;NM<br>;                     | 200      | 100      | 0    |          |       |        |             | 19              | 0.42                 | 20             | 0.40                   |                   |               |         |
| Senecio psilocarpus                        | SePs; | VU   | е    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 27              | 0.41                 | 50             | 0.42                   |                   |               |         |
| Senecio quadridentatus                     | SeQu; |      |      | В             | BL;CH;                               | 200      | 100      | 0    |          |       |        |             | 100             | 0.26                 | 188            | 0.23                   |                   |               |         |
| Senecio squarrosus                         | SePs; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 27              | 0.41                 | 50             | 0.42                   |                   |               |         |
| Senecio vagus subsp.<br>vagus              | SeVa; |      |      | В             | FL;                                  | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Senecio velleioides                        | SeVe; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 31              | 0.39                 | 39             | 0.33                   |                   |               |         |
| Sicyos australis                           | SiAu; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 3              | 1.00                   | Р                 |               |         |
| Siloxerus multiflorus                      | SiMu; |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 11              | 0.64                 | 24             | 0.67                   |                   |               |         |

| Species                                     | Code   | EPBC | TSPA  | Model<br>type | Bioregions              | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------|--------|------|-------|---------------|-------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Solanum laciniatum                          | SoLa;  |      |       | В             | SR;NS;WSW;<br>CH;NM;BL; | 200      | 100      | 0    |          |       |        |             | 46              | 0.54                 | 62             | 0.55                   |                   |               |         |
| Solanum opacum                              | SoOp;  |      | e     | Р             |                         | 200      | 100      | 0    |          |       |        |             | 4               | 0.75                 | 7              | 0.43                   |                   |               |         |
| Solanum vescum                              | SoVe;  |      |       | В             | NS;NM;                  | 200      | 100      | 0    |          |       |        |             | 16              | 0.50                 | 22             | 0.59                   |                   |               |         |
| Solenogyne dominii                          | SoDo;  |      |       | В             | FL;WSW;                 | 200      | 100      | 0    |          |       |        |             | 73              | 0.23                 | 123            | 0.23                   |                   |               |         |
| Solenogyne gunnii                           | SoGu;  |      |       | В             | KI;FL;WSW;              | 200      | 100      | 0    |          |       |        |             | 91              | 0.42                 | 178            | 0.43                   |                   |               |         |
| Sowerbaea juncea                            | SoJu;  |      | v     | Р             |                         | 200      | 100      | 0    |          |       |        |             | 5               | 0.20                 | 9              | 0.11                   | Р                 |               |         |
| Sphaerolobium minus                         | SpMin; |      | 0<br> | В             | NS;NM;                  | 200      | 100      | 0    |          |       | 0      |             | 46              | 0.70                 | 71             | 0.70                   |                   |               |         |
| Spinifex sericeus                           | SpSe;  |      |       | В             | NS;                     | 200      | 100      | 0    |          |       |        |             | 28              | 0.61                 | 46             | 0.67                   |                   |               |         |
| Spiranthes australis                        | SpAu;  |      |       | В             | NS;CH;BL;               | 200      | 100      | 0    |          |       |        |             | 30              | 0.57                 | 44             | 0.61                   |                   |               |         |
| Sporadanthus tasmanicus                     | SpTa;  | 0    | 9     | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 88              | 0.75                 | 163            | 0.81                   |                   |               |         |
| Sporobolus virginicus                       | SpVi;  | ō    | r     | Р             |                         | 200      | 100      | 0    |          |       |        |             | 19              | 0.63                 | 25             | 0.68                   |                   |               |         |
| Sprengelia distichophylla                   | SpDi;  | 0    |       | В             | CH;SR;                  | 200      | 100      | 0    |          |       |        |             | 8               | 1.00                 | 12             | 1.00                   |                   |               | Y       |
| Sprengelia incarnata                        | Spln;  |      |       | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 164             | 0.74                 | 369            | 0.78                   |                   |               |         |
| Spyridium eriocephalum<br>var. eriocephalum | SpEE;  |      | е     | Р             |                         | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 3              | 0.67                   | Р                 |               |         |
| Spyridium gunnii                            | SpGu;  |      |       | В             | NS;SE;                  | 200      | 100      | 0    |          |       |        |             | 20              | 0.80                 | 29             | 0.83                   |                   |               | Y       |
| Spyridium lawrencei                         | SpLa;  | EN   | v     | Р             |                         | 200      | 100      | 0    |          |       |        |             | 11              | 0.27                 | 31             | 0.23                   | Р                 |               | Y       |
| Spyridium obcordatum                        | SpObc; | VU   | v     | Р             |                         | 200      | 100      | 0    |          |       |        |             | 6               | 0.50                 | 18             | 0.56                   |                   |               | Y       |
| Spyridium obovatum                          | SpObo; |      |       | В             | SR;FL;NM;               | 200      | 100      | 0    |          |       |        |             | 25              | 0.64                 | 41             | 0.68                   |                   |               | Y       |
| Spyridium obovatum var.<br>obovatum         | SpOO;  |      |       | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 18              | 0.56                 | 36             | 0.58                   |                   |               | Y       |
| Spyridium obovatum var.<br>velutinum        | SpOV;  |      |       | В             | NM;                     | 200      | 100      | 0    |          |       |        |             | 14              | 0.43                 | 20             | 0.45                   |                   |               | Y       |
| Spyridium parvifolium                       | SpPa;  |      | pr    | Р             | SE;                     | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |

| Species                                     | Code   | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native   | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------|--------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|----------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Spyridium parvifolium var.<br>molle         | SpPM;  |      | r    | Р             | BL;                                  | 200      | 100      | 0    |          |       |          |             | 9               | 0.33                 | 16             | 0.44                   |                   |               | Y       |
| Spyridium parvifolium var.<br>parvifolium   | SpPP;  |      | r    | Р             | BL;SE;                               | 200      | 100      | 0    |          |       |          |             | 21              | 0.48                 | 33             | 0.36                   |                   |               |         |
| Spyridium ulicinum                          | SpUl;  |      |      | В             | CH;FL;                               | 200      | 100      | 0    |          |       |          |             | 16              | 0.31                 | 27             | 0.44                   |                   |               | Y       |
| Spyridium vexilliferum var.<br>vexilliferum | SpVe;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |          |             | 18              | 0.61                 | 34             | 0.65                   |                   |               |         |
| Stackhousia pulvinaris                      | StkPu; |      | v    | Р             |                                      | 200      | 500      | 0    |          |       |          |             | 3               | 1.00                 | 11             | 0.82                   |                   |               |         |
| Stackhousia spathulata                      | StSp;  |      |      | В             | NM;SR;SE;                            | 200      | 100      | 0    |          |       |          |             | 15              | 0.93                 | 21             | 0.95                   |                   |               |         |
| Stackhousia subterranea                     | StSu;  |      | е    | Р             |                                      | 200      | 200      | 0    |          |       |          |             | 11              | 0.45                 | 24             | 0.54                   |                   |               |         |
| Stellaria angustifolia                      | StAn;  |      |      | В             | NS;NM;BL;SE;                         | 200      | 100      | 0    |          |       |          | ō,          | 17              | 0.29                 | 21             | 0.33                   |                   |               |         |
| Stellaria caespitosa                        | StCa;  |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |          |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Stellaria flaccida                          | StFl;  |      | 0    | В             | FL;                                  | 200      | 100      | 0    |          |       |          | <br>-       | 69              | 0.72                 | 112            | 0.71                   |                   |               |         |
| Stellaria multiflora                        | StMu;  |      | r    | Р             | SR;                                  | 200      | 100      | 0    |          |       |          |             | 48              | 0.56                 | 82             | 0.46                   |                   |               |         |
| Stellaria pungens                           | StlPu; |      |      | В             | KI;NM;                               | 200      | 100      | 0    |          |       |          |             | 49              | 0.51                 | 77             | 0.48                   |                   |               |         |
| Stenanthemum<br>pimeleoides                 | StPi;  | VU   | v    | Р             |                                      | 200      | 100      | 0    |          |       |          |             | 14              | 0.57                 | 33             | 0.55                   |                   |               | Y       |
| Stenopetalum lineare                        | StLi;  |      | е    | Р             |                                      | 200      | 100      | 0    |          |       |          |             | 4               | 0.50                 | 5              | 0.40                   | Р                 |               |         |
| Sticherus lobatus                           | StLo;  |      |      | В             | SE;BL;                               | 200      | 100      | 0    |          |       |          |             | 27              | 0.81                 | 38             | 0.82                   |                   |               |         |
| Sticherus urceolatus                        | StUr;  |      |      | В             | KI;FL;CH;BL;                         | 200      | 100      | 0    |          |       |          |             | 34              | 0.59                 | 35             | 0.57                   |                   |               |         |
| Stonesiella selaginoides                    | StSe;  | EN   | е    | Р             |                                      | 200      | 100      | 0    |          |       | <u>.</u> |             | 2               | 0.50                 | 7              | 0.71                   | Р                 |               | Y       |
| Stuckenia pectinata                         | StPe;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |          |             | 12              | 0.67                 | 13             | 0.69                   |                   |               |         |
| Stylidium armeria subsp.<br>armeria         | StAr;  |      |      | В             | FL;                                  | 200      | 100      | 0    |          |       |          |             | 20              | 0.55                 | 28             | 0.64                   |                   |               |         |

| Species                  | Code   | EPBC | TSPA | Model<br>type | Bioregions             | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|--------------------------|--------|------|------|---------------|------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Stylidium beaugleholei   | StBe;  |      | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 17              | 0.65                 | 30             | 0.77                   |                   |               |         |
| Stylidium despectum      | StDe;  | 0    | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 21              | 0.76                 | 30             | 0.73                   |                   |               |         |
| Stylidium perpusillum    | StPer; |      | r    | Р             | BL;                    | 200      | 100      | 0    |          |       |        |             | 12              | 0.83                 | 17             | 0.76                   |                   |               |         |
| Stylidium sp. Ephemeral  | StEp;  |      | pr   | Р             |                        | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Suaeda australis         | SuAu;  |      |      | В             | SR;KI;NS;              | 200      | 100      | 0    |          |       |        |             | 24              | 0.42                 | 35             | 0.49                   |                   |               |         |
| Swainsona lessertiifolia | SwLe;  |      |      | В             | SE;                    | 200      | 100      | 0    |          |       |        |             | 14              | 0.71                 | 20             | 0.75                   |                   |               |         |
| Taraxacum aristum        | TaAr;  |      | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 6              | 0.67                   |                   |               |         |
| Taraxacum cygnorum       | ТаСу;  | VU   |      | Р             |                        | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Tecticornia arbuscula    | TeAr;  |      |      | Р             |                        | 200      | 100      | 0    |          |       |        |             | 20              | 0.45                 | 25             | 0.44                   |                   |               |         |
| Telopea truncata         | TeTr;  |      |      | В             | NM;                    | 200      | 100      | 0    |          |       |        |             | 97              | 0.81                 | 204            | 0.84                   |                   |               | Y       |
| Tetracarpaea tasmannica  | ТеТа;  |      |      | В             | NS;                    | 200      | 100      | 0    |          |       |        |             | 35              | 0.91                 | 57             | 0.93                   |                   |               | Y       |
| Tetragonia tetragonoides | TeTe;  |      |      | В             | NS;SE;SR;              | 200      | 100      | 0    |          |       |        |             | 13              | 0.46                 | 17             | 0.59                   |                   |               |         |
| Tetrarrhena acuminata    | EhAc;  |      |      | В             | KI;NS;CH;NM;           | 200      | 100      | 0    |          |       |        |             | 39              | 0.69                 | 47             | 0.68                   |                   |               |         |
| Tetratheca ciliata       | TeCi;  | -    | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 9               | 0.56                 | 10             | 0.50                   |                   |               |         |
| Tetratheca gunnii        | TeGu;  | CR   | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 8              | 0.88                   |                   |               | Y       |
| Tetratheca procumbens    | TePr;  |      |      | В             | KI;NS;FL;              | 200      | 100      | 0    |          |       |        |             | 37              | 0.65                 | 60             | 0.65                   |                   |               | Y       |
| Teucrium corymbosum      | TeCo;  |      | r    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 30              | 0.40                 | 61             | 0.41                   |                   |               |         |
| Thelionema caespitosum   | ThCae; | 0    | 9    | В             | KI;CH;NM;BL;           | 200      | 100      | 0    | a        |       |        |             | 41              | 0.46                 | 59             | 0.44                   |                   | 2             |         |
| Thelionema umbellatum    | ThUm;  | -    |      | В             | KI;FL;SR;              | 200      | 100      | 0    |          |       |        |             | 7               | 0.71                 | 11             | 0.73                   |                   |               |         |
| Thelymitra antennifera   | ThAn;  |      | e    | Р             | KI;SE;                 | 200      | 100      | 0    |          |       |        |             | 4               | 0.50                 | 8              | 0.38                   |                   |               |         |
| Thelymitra arenaria      | ThAr;  |      |      | В             | SR;NS;FL;CH;<br>NM;BL; | 200      | 100      | 0    |          |       |        |             | 22              | 0.41                 | 26             | 0.38                   |                   |               | Y       |
| Thelymitra atronitida    | ThAt;  |      | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Thelymitra benthamiana   | ThBe;  |      | е    | Р             |                        | 200      | 100      | 0    |          |       |        |             | 2               | 0.00                 | 3              | 0.00                   | Р                 |               |         |

| Species                | Code   | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------|--------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Thelymitra bracteata   | ThBr;  |      | е    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               | -       |
| Thelymitra carnea      | ThCar; |      |      | В             | SR;NS;WSW;<br>NM;BL;                 | 200      | 100      | 0    |          |       |        |             | 18              | 0.33                 | 21             | 0.33                   |                   |               |         |
| Thelymitra circumsepta | ThCi;  |      |      | В             | NS;FL;BL;                            | 200      | 100      | 0    |          |       |        |             | 23              | 0.78                 | 28             | 0.79                   |                   |               |         |
| Thelymitra cyanea      | ThCy;  |      |      | В             | FL;NS;                               | 200      | 100      | 0    |          |       |        |             | 54              | 0.70                 | 79             | 0.71                   |                   |               |         |
| Thelymitra erosa       | ThEr;  |      |      | В             | NS;FL;NM;BL;                         | 200      | 100      | 0    |          |       |        |             | 44              | 0.59                 | 53             | 0.55                   |                   |               |         |
| Thelymitra exigua      | ThEx;  |      |      | В             | FL;                                  | 200      | 100      | 0    |          |       |        | Q           | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Thelymitra flexuosa    | ThFl;  |      |      | В             | WSW;NM;BL;                           | 200      | 100      | 0    |          | 0     |        | ō           | 28              | 0.68                 | 47             | 0.70                   |                   |               |         |
| Thelymitra holmesii    | ThHo;  |      | r    | Р             |                                      | 200      | 100      | 0    |          | 0     |        |             | 20              | 0.50                 | 21             | 0.52                   |                   |               |         |
| Thelymitra imbricata   | Thlm;  | 2    | 0    | В             | KI;FL;CH;NM;<br>SE;                  | 200      | 100      | 0    |          |       |        |             | 7               | 0.43                 | 9              | 0.33                   |                   | J             | Y       |
| Thelymitra improcera   | ThImp; |      |      | В             | KI;                                  | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Thelymitra inflata     | ThIn;  |      |      | В             | SE;                                  | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Thelymitra ixioides    | Thlx;  |      |      | В             | BL;FL;NM;WS<br>W;                    | 200      | 100      | 0    |          |       |        |             | 32              | 0.44                 | 41             | 0.41                   |                   |               |         |
| Thelymitra jonesii     | ThJo;  | EN   | e    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 8               | 0.25                 | 11             | 0.36                   | Р                 |               | Y       |
| Thelymitra longiloba   | ThLo;  |      |      | В             | SE;SR;FL;WS<br>W;NM;BL;              | 200      | 100      | 0    |          | a     |        |             | 7               | 0.71                 | 9              | 0.67                   |                   |               |         |
| Thelymitra lucida      | ThLu;  |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               |         |
| Thelymitra malvina     | ThMa;  |      | e    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 13              | 0.31                 | 18             | 0.39                   |                   |               |         |
| Thelymitra mucida      | ThMu;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 6              | 0.50                   |                   |               |         |
| Thelymitra nuda        | ThNu;  |      |      | В             | NS;FL;WSW;C<br>H;BL;                 | 200      | 100      | 0    |          |       |        |             | 34              | 0.50                 | 43             | 0.51                   |                   |               |         |
| Thelymitra pauciflora  | ThePa; |      |      | В             | CH;                                  | 200      | 100      | 0    |          |       |        |             | 89              | 0.49                 | 135            | 0.44                   |                   |               |         |

| Species                                 | Code   | EPBC | TSPA | Model<br>type | Bioregions                           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------|--------|------|------|---------------|--------------------------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Thelymitra peniculata                   | ThPe;  |      |      | В             | FL;NM;SE;SR;                         | 200      | 100      | 0    |          |       |        |             | 7               | 0.14                 | 8              | 0.13                   | Р                 |               |         |
| Thelymitra polychroma                   | ThPo;  |      |      | В             | FL;BL;                               | 200      | 100      | 0    |          |       |        |             | 6               | 0.83                 | 11             | 0.82                   |                   |               | Y       |
| Thelymitra silena                       | ThSi;  |      |      | В             | FL;SR;WSW;                           | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 7              | 1.00                   |                   |               | Y       |
| Thelymitra simulata                     | ThSim; |      |      | В             | FL;BL;SE                             | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 5              | 1.00                   |                   |               |         |
| Thelymitra spadicea                     | ThSp;  |      |      | В             | FL;                                  | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 6              | 0.67                   |                   |               | Y       |
| Thelymitra viridis                      | ThVi;  |      |      | В             | SE;                                  | 200      | 100      | 0    |          |       |        |             | 5               | 0.60                 | 6              | 0.50                   |                   |               | Y       |
| Thelymitra Xirregularis                 | ThXI;  |      |      | В             | FL;KI;SE;                            | 200      | 100      | 0    |          |       |        |             | 5               | 0.20                 | 7              | 0.29                   | Р                 |               |         |
| Thelymitra Xmerraniae                   | ThXM;  |      |      | В             | BL;CH;FL;KI;N<br>M;NS;SE;SR;<br>WSW; | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 2              | 1.00                   |                   |               |         |
| Thelymitra Xtruncata                    | ThXt;  |      |      | В             | FL;BL;SR;WS<br>W;                    | 200      | 100      | 0    |          |       |        |             | 16              | 0.56                 | 18             | 0.61                   |                   |               |         |
| Thismia rodwayi                         | ThRo;  |      | r    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 17              | 0.53                 | 35             | 0.57                   |                   |               |         |
| Thryptomene micrantha                   | ThMi;  |      | v    | Р             |                                      | 200      | 500      | 0    |          |       |        | ······      | 4               | 0.75                 | 6              | 0.67                   |                   |               |         |
| Thynninorchis<br>nothofagicola          | ThNo;  | CR   | е    | Р             |                                      | 200      | 500      | 0    |          |       |        |             | 1               | 1.00                 | 1              | 1.00                   | Р                 |               | Y       |
| Thysanotus patersonii                   | ThPa;  |      |      | В             | SR;KI;NS;BL;                         | 200      | 100      | 0    |          |       |        |             | 39              | 0.72                 | 68             | 0.72                   |                   |               |         |
| Tmesipteris elongata                    | TmEl;  |      |      | В             | SE;                                  | 200      | 100      | 0    |          |       |        |             | 22              | 0.64                 | 25             | 0.68                   |                   |               |         |
| Tmesipteris parva                       | TmPa;  |      | v    | Р             |                                      | 200      | 100      | 0    |          |       |        |             | 2               | 0.50                 | 3              | 0.67                   | Р                 |               |         |
| Todea barbara                           | ТоВа;  | -    | 9    | В             | SR;NM;                               | 200      | 100      | 0    |          |       |        |             | 54              | 0.65                 | 86             | 0.65                   |                   |               |         |
| Trachymene composita<br>var composita   | TrCo;  |      | 2    | В             | SR;KI;NM;                            | 200      | 200      | 0    |          |       |        |             | 8               | 0.75                 | 11             | 0.64                   |                   |               |         |
| Trachymene humilis                      | TrHu;  |      |      | В             | SE;NS;                               | 200      | 100      | 0    |          |       |        |             | 13              | 0.69                 | 24             | 0.75                   |                   |               |         |
| Trachymene humilis<br>subsp. breviscapa | TrHB;  |      |      | В             | NS;SE;                               | 200      | 100      | 0    |          |       |        |             | 3               | 0.67                 | 5              | 0.60                   |                   |               |         |

| Species                                  | Code  | EPBC     | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------------|-------|----------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Trachymene humilis<br>subsp. humilis     | TrHH; |          |      | В             | NS;SE;              | 200      | 100      | 0    |          |       |        |             | 8               | 0.38                 | 11             | 0.27                   |                   |               |         |
| Tricoryne elatior                        | TrEl; |          | v    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 13              | 0.15                 | 25             | 0.08                   |                   |               |         |
| Tricostularia pauciflora                 | TrPa; | -        | r    | Р             | FL;                 | 200      | 200      | 0    |          |       |        |             | 3               | 0.33                 | 4              | 0.25                   | Р                 |               |         |
| Triglochin alcockiae                     | TrAl; |          |      | В             | SE;SR;CH;NM<br>;    | 200      | 100      | 0    |          |       |        |             | 12              | 0.83                 | 15             | 0.87                   |                   |               |         |
| Triglochin minutissima                   | TrMi; |          | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 18              | 0.78                 | 26             | 0.81                   |                   |               |         |
| Triglochin mucronatum                    | TrMu; |          | е    | Р             |                     | 200      | 200      | 0    |          |       |        |             | 2               | 0.50                 | 2              | 0.50                   | Р                 |               |         |
| Triglochin nana                          | TrNa; |          |      | В             | KI;NM;SE;           | 200      | 100      | 0    |          |       |        |             | 13              | 0.69                 | 16             | 0.69                   |                   |               | 0<br>   |
| Triglochin procera                       | TrPr; |          |      | В             | BL;NS;              | 200      | 100      | 0    |          |       |        | -           | 83              | 0.41                 | 144            | 0.42                   |                   |               |         |
| Triglochin rheophila                     | TrRh; |          |      | В             | NS;BL;SE;           | 200      | 100      | 0    |          |       |        |             | 9               | 0.44                 | 11             | 0.55                   |                   |               |         |
| Triglochin striata                       | TrSt; |          |      | В             | SR;BL;              | 200      | 100      | 0    |          |       |        |             | 67              | 0.45                 | 102            | 0.46                   |                   |               |         |
| Triptilodiscus pygmaeus                  | TrPy; |          | v    | Р             | NM;SE;              | 200      | 200      | 0    |          |       |        |             | 16              | 0.25                 | 34             | 0.35                   |                   |               |         |
| Trisetum spicatum subsp.<br>australiense | TrSA; |          |      | В             | WSW;NM;             | 200      | 100      | 0    |          |       |        |             | 24              | 0.67                 | 35             | 0.69                   |                   |               |         |
| Trithuria submersa                       | TrSu; |          | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 14              | 0.64                 | 19             | 0.74                   |                   |               | Y       |
| Trochocarpa disticha                     | TrDi; |          |      | В             | KI;WSW;             | 200      | 100      | 0    |          |       |        |             | 12              | 0.67                 | 20             | 0.60                   |                   |               | Y       |
| Trochocarpa gunnii                       | TrGu; |          |      | В             | SE;                 | 200      | 100      | 0    |          |       |        |             | 77              | 0.82                 | 160            | 0.86                   |                   |               | Y       |
| Trochocarpa thymifolia                   | TrTh; |          |      | В             | SE;BL;WSW;N<br>M;   | 200      | 100      | 0    |          |       |        |             | 19              | 0.89                 | 34             | 0.91                   |                   |               | Y       |
| Typha angustifolia                       | TyAn; |          |      | В             | KI;                 | 200      | 100      | 0    |          |       |        |             | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Typha domingensis                        | TyDo; |          |      | В             | FL;NM;SE;           | 200      | 100      | 0    |          |       |        |             | 10              | 0.10                 | 12             | 0.08                   | Р                 |               |         |
| Typha orientalis                         | TyOr; |          |      | В             | SE;KI;NS;FL;N<br>M; | 200      | 100      | 0    |          |       |        |             | 10              | 0.10                 | 11             | 0.09                   | Р                 |               |         |
| Uncinia compacta                         | UnCo; |          |      | В             | SE;KI;NM;           | 200      | 100      | 0    |          |       |        |             | 42              | 0.93                 | 75             | 0.95                   |                   |               |         |
| Uncinia elegans                          | UnEl; | <u> </u> | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 20              | 0.30                 | 22             | 0.36                   |                   |               |         |

| Species                                     | Code   | EPBC | TSPA | Model<br>type | Bioregions          | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------|--------|------|------|---------------|---------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Uncinia riparia                             | UnRi;  |      |      | В             | NM;                 | 200      | 100      | 0    |          |       |        |             | 55              | 0.69                 | 88             | 0.70                   |                   |               |         |
| Uncinia tenella                             | UnTe;  |      |      | В             | NM;FL;              | 200      | 100      | 0    |          |       |        |             | 98              | 0.72                 | 188            | 0.69                   |                   |               |         |
| Utricularia australis                       | UtAu;  |      | r    | Р             | FL;NM;SE;WS<br>W;   | 200      | 200      | 0    | Y        | Y     |        |             | 10              | 0.60                 | 12             | 0.67                   |                   |               |         |
| Utricularia dichotoma                       | UtDi;  |      |      | В             | NS;BL;              | 200      | 100      | 0    |          |       |        |             | 71              | 0.69                 | 103            | 0.70                   |                   |               |         |
| Utricularia monanthos                       | UtMo;  |      |      | В             | KI;NM;BL;SR;        | 200      | 100      | 0    |          |       |        |             | 16              | 0.56                 | 21             | 0.67                   |                   |               |         |
| Utricularia tenella                         | UtTe;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 10              | 0.70                 | 16             | 0.69                   |                   |               |         |
| Utricularia violacea                        | UtVi;  | -    | r    | Р             | FL;KI;              | 200      | 200      | 0    | Y        |       |        | ōi          | -1              | -1.00                | -1             | -1.00                  | Р                 |               |         |
| Vallisneria australis                       | VaAu;  | 0    | r    | Р             |                     | 200      | 500      | 0    | Y        |       |        |             | 6               | 0.33                 | 8              | 0.25                   |                   |               |         |
| Velleia montana                             | VeMo;  |      |      | В             | WSW;NM;             | 200      | 100      | 0    |          |       |        |             | 55              | 0.58                 | 112            | 0.67                   |                   |               |         |
| Velleia paradoxa                            | VePa;  | 0    | v    | Р             |                     | 200      | 100      | 0    |          |       |        | ı           | 17              | 0.18                 | 30             | 0.20                   |                   |               |         |
| Veronica calycina                           | VeCa;  | 0    |      | В             | KI;WSW;             | 200      | 100      | 0    |          |       |        |             | 133             | 0.60                 | 279            | 0.58                   |                   |               |         |
| Veronica ciliolata subsp.<br>fiordensis     | VeCF;  | VU   | V    | Р             |                     | 200      | 200      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               |         |
| Veronica derwentiana<br>subsp. derwentiana  | VeDD;  |      |      | В             | KI;FL;NM;BL;S<br>R; | 200      | 100      | 0    |          |       |        |             | 18              | 0.39                 | 22             | 0.50                   |                   |               |         |
| Veronica formosa                            | VeFo;  |      |      | В             | FL;WSW;NM;          | 200      | 100      | 0    |          |       |        |             | 35              | 0.54                 | 65             | 0.62                   |                   |               | Y       |
| Veronica gracilis                           | VeGr;  |      |      | В             | WSW;KI;             | 200      | 100      | 0    |          |       |        |             | 141             | 0.43                 | 286            | 0.43                   |                   |               |         |
| Veronica novae-<br>hollandiae               | VeNo;  |      | v    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 5               | 1.00                 | 8              | 1.00                   |                   |               | Y       |
| Veronica plebeia                            | VePl;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 13              | 0.31                 | 22             | 0.27                   |                   |               |         |
| Viminaria juncea                            | ViJu;  |      | е    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 0.50                   | Р                 |               |         |
| Viola betonicifolia subsp.<br>betonicifolia | ViBB;  |      |      | В             | KI;FL;WSW;          | 200      | 100      | 0    |          |       |        |             | 91              | 0.47                 | 193            | 0.55                   |                   |               |         |
| Viola caleyana                              | ViCa;  |      | r    | Р             |                     | 200      | 100      | 0    |          |       |        |             | 4               | 0.25                 | 5              | 0.20                   | Р                 |               |         |
| Viola cunninghamii                          | VioCu; |      | r    | Р             |                     | 200      | 500      | 0    |          |       |        |             | 15              | 0.53                 | 25             | 0.60                   |                   |               |         |

| Species                                     | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|---------------------------------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Viola fuscoviolacea                         | ViFu;  |      |      | В             | NS;                  | 200      | 100      | 0    |          |       |        |             | 14              | 0.71                 | 27             | 0.78                   |                   |               |         |
| Viola hederacea subsp.<br>curtisiae         | ViHC;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 3               | 1.00                 | 3              | 1.00                   |                   |               | Y       |
| Viola sieberiana                            | ViSi;  |      |      | В             | SE;FL;WSW;           | 200      | 100      | 0    |          |       |        |             | 12              | 0.58                 | 18             | 0.72                   |                   |               |         |
| Vittadinia australasica<br>var. oricola     | ViAO;  |      | е    | Р             | КІ;                  | 200      | 100      | 0    |          |       |        |             | 1               | 1.00                 | 2              | 1.00                   | Р                 |               |         |
| Vittadinia burbidgeae                       | ViBu;  |      | r    | Р             | SE;                  | 200      | 100      | 0    |          |       |        |             | 23              | 0.17                 | 45             | 0.29                   |                   |               | Y       |
| Vittadinia cuneata var.<br>cuneata          | VitCu; |      | r    | Р             | BL;CH;NM;SR<br>;     | 200      | 100      | 0    |          |       |        |             | 26              | 0.12                 | 56             | 0.18                   | Р                 |               |         |
| Vittadinia gracilis                         | ViGr;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 30              | 0.13                 | 73             | 0.12                   | Р                 |               |         |
| Vittadinia muelleri                         | ViMu;  |      | r    | Р             | CH;NM;SR;            | 200      | 100      | 0    |          |       |        | oı          | 22              | 0.09                 | 66             | 0.11                   | Р                 |               |         |
| <i>Vittadinia muelleri</i> (broad<br>sense) | ViMu;  |      | pr   | Р             | CH;NM;SR;            | 200      | 100      | 0    |          |       |        |             | 22              | 0.09                 | 66             | 0.11                   | Р                 |               |         |
| Vittadinia sp                               | ViSp;  |      | pr   | Р             |                      | 200      | 100      | 0    |          |       |        |             | 3               | 0.33                 | 3              | 0.33                   | Р                 |               |         |
| Wahlenbergia ceracea                        | WaCe;  |      |      | В             | NS;FL;WSW;B<br>L;SR; | 200      | 100      | 0    |          |       |        |             | 29              | 0.76                 | 49             | 0.76                   |                   |               |         |
| Wahlenbergia gracilenta                     | WaGr;  |      |      | В             | CH;                  | 200      | 100      | 0    |          |       |        |             | 79              | 0.38                 | 122            | 0.40                   |                   |               |         |
| Wahlenbergia multicaulis                    | WaMu;  |      |      | В             | KI;                  | 200      | 100      | 0    |          |       |        | ·           | 81              | 0.37                 | 150            | 0.34                   |                   |               |         |
| Wahlenbergia saxicola                       | WaSa;  |      |      | В             | NS;WSW;              | 200      | 100      | 0    |          |       |        |             | 28              | 0.82                 | 52             | 0.81                   |                   |               | Y       |
| Wahlenbergia stricta<br>subsp. stricta      | WaSt;  |      |      | В             | BL;KI;               | 200      | 100      | 0    |          |       |        |             | 90              | 0.43                 | 164            | 0.41                   |                   |               |         |
| Westringia angustifolia                     | WeAn;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 17              | 0.29                 | 34             | 0.44                   |                   |               | Y       |
| Westringia brevifolia                       | WeBr;  |      |      | В             | CH;BL;               | 200      | 100      | 0    |          |       |        |             | 21              | 0.81                 | 36             | 0.89                   |                   |               | Y       |
| Westringia rubiifolia                       | WeRu;  |      |      | В             | FL;                  | 200      | 100      | 0    |          |       |        |             | 23              | 0.65                 | 45             | 0.73                   |                   |               | Y       |
| Wilsonia humilis                            | WiHu;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 7               | 0.29                 | 10             | 0.40                   |                   |               |         |
| Wilsonia rotundifolia                       | WiRo;  |      | r    | Р             | NM;                  | 200      | 100      | 0    | Y        |       |        |             | 22              | 0.50                 | 33             | 0.42                   |                   |               |         |

| Species                                       | Code   | EPBC | TSPA | Model<br>type | Bioregions           | Accuracy | Distance | Year | Riparian | Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|-----------------------------------------------|--------|------|------|---------------|----------------------|----------|----------|------|----------|-------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Wolffia australiana                           | WoAu;  |      |      | В             | KI;NS;NM;SE;         | 200      | 100      | 0    |          |       |        |             | 12              | 0.25                 | 14             | 0.21                   |                   |               |         |
| <i>Wurmbea dioica</i> subsp.<br><i>dioica</i> | WuDD;  |      |      | В             | BL;SR;               | 200      | 100      | 0    |          |       |        |             | 51              | 0.31                 | 92             | 0.38                   |                   |               |         |
| Wurmbea latifolia subsp.<br>vanessae          | WuLV;  |      | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 2              | 0.00                   | Р                 |               |         |
| Wurmbea uniflora                              | WuUn;  |      |      | В             | NM;                  | 200      | 100      | 0    |          |       |        |             | 31              | 0.45                 | 44             | 0.55                   |                   |               |         |
| Xanthorrhoea aff.<br>arenaria                 | XaAr;  | PVU  | pv   | Р             |                      | 200      | 100      | 0    |          |       |        |             | 1               | 0.00                 | 1              | 0.00                   | Р                 |               | Y       |
| Xanthorrhoea aff.<br>bracteata                | XaABr; | EN   | рv   | Р             |                      | 200      | 100      | 0    |          |       |        |             | 8               | 0.25                 | 13             | 0.15                   | Р                 |               | Y       |
| Xanthorrhoea arenaria                         | XaAre; | VU   | v    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 14              | 0.36                 | 30             | 0.33                   |                   |               | Y       |
| Xanthorrhoea australis                        | XaAu;  |      |      | В             | KI;CH;               | 200      | 100      | 0    |          |       | 0      |             | 57              | 0.56                 | 125            | 0.58                   |                   |               |         |
| Xanthorrhoea bracteata                        | XaBr;  | EN   | v    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 14              | 0.36                 | 41             | 0.34                   |                   |               | Y       |
| Xanthosia pilosa                              | XaPi;  |      |      | В             | SR;                  | 200      | 100      | 0    |          |       | -      |             | 62              | 0.66                 | 106            | 0.63                   |                   |               |         |
| Xanthosia ternifolia                          | ХаТе;  |      |      | В             | KI;SR;               | 200      | 100      | 0    |          |       |        |             | 17              | 0.41                 | 19             | 0.47                   |                   |               |         |
| Xerochrysum bicolor                           | XeBi;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 15              | 0.67                 | 18             | 0.56                   |                   |               |         |
| Xerochrysum bracteatum                        | XeBr;  |      |      | В             | SR;KI;WSW;C<br>H;NM; | 200      | 100      | 0    |          |       |        |             | 19              | 0.58                 | 24             | 0.63                   |                   |               |         |
| Xerochrysum palustre                          | XePa;  | VU   | v    | Р             | NM;                  | 200      | 100      | 0    |          |       |        |             | 11              | 0.45                 | 12             | 0.50                   |                   |               |         |
| Xerochrysum papillosum                        | XePap; |      |      | В             | BL;                  | 200      | 100      | 0    |          |       |        |             | 14              | 0.64                 | 23             | 0.70                   |                   |               |         |
| Xerochrysum<br>subundulatum                   | XeSu;  |      |      | В             | KI;FL;WSW;N<br>M;SE; | 200      | 100      | 0    |          |       |        |             | 28              | 0.75                 | 62             | 0.84                   |                   |               |         |
| Xyris tasmanica                               | ХуТа;  |      |      | В             | FL;NS;               | 200      | 100      | 0    |          |       |        |             | 35              | 0.69                 | 46             | 0.61                   |                   |               | Y       |
| Zieria littoralis                             | ZiLi;  |      | r    | Р             |                      | 200      | 100      | 0    |          |       | 0      |             | 1               | 0.00                 | 4              | 0.75                   | Р                 |               |         |
| Zieria veronicea subsp.<br>veronicea          | ZiVV;  |      | е    | Р             |                      | 200      | 100      | 0    |          |       |        |             | 2               | 1.00                 | 4              | 1.00                   |                   |               |         |

| Species                            | Code  | EPBC | TSPA | Model<br>type | Bioregions | Accuracy | Distance | Year | Riparian<br>Water | Native | Plantations | Land<br>systems | Land sys<br>reserved | Land<br>comps. | Land comps<br>reserved | Reserve<br>status | Fauna<br>type | Endemic |
|------------------------------------|-------|------|------|---------------|------------|----------|----------|------|-------------------|--------|-------------|-----------------|----------------------|----------------|------------------------|-------------------|---------------|---------|
| Zoysia macrantha subsp.<br>walshii | ZoMW; |      |      | В             | KI;CH;NM;  | 200      | 100      | 0    |                   |        |             | 24              | 0.58                 | 29             | 0.55                   |                   |               |         |
| Zygophyllum billardierei           | ZyBi; |      | r    | Р             |            | 200      | 100      | 0    |                   |        |             | 4               | 1.00                 | 14             | 0.79                   |                   |               |         |

Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit: Attachment 7 – Spatial habitat models for priority threatened fauna

**R.I. Knight** 

March 2014

**Report to Forestry Tasmania** 

natural resource planning

## Suggested citation:

Knight, R.I. (2014). Biodiversity data, models and indicators for Forestry Tasmania's Forest Management Unit: Attachment 7 – Spatial habitat models for priority threatened fauna. A report to Forestry Tasmania, March 2014. Natural Resource Planning, Hobart, Tasmania.

Produced by: Natural Resource Planning Pty Ltd ACN: 130 109 250 PO Box 4530 Bathurst Street Hobart, TASMANIA, 7000. Australia. www.naturalresourceplanning.com.au

© Natural Resource Planning Pty Ltd

This work is protected under Australian copyright law. The report may be freely circulated, cited or reproduced only in accordance with the provisions of applicable copyright law.

Commercial use of the contents and format of this report and the intellectual property herein is prohibited except as provided for by the service contract between Natural Resource Planning and Forestry Tasmania. Potential users should contact the company for further information.

*Disclaimer:* Whilst due and reasonable care has been taken in the preparation of this report and the data described herein, NRP does not warrant that it is free of errors or omissions and does not accept responsibility for any cost or inconvenience arising from its use. Use and interpretation of the data is a matter for Forestry Tasmania.



## CONTENTS

| 1  | 1. Introduction                           |
|----|-------------------------------------------|
| 5  | 2. Species habitat descriptors and models |
| 5  | 2.1 Birds                                 |
| 17 | 2.2 Fish                                  |
| 26 | 2.3 Frogs and reptiles                    |
| 30 | 2.4 Invertebrates                         |
| 68 | Mammals                                   |

## 1. Introduction

Development of the Regional Ecosystem Model (REM) requires spatial modelling of the locations and habitat of threatened and 'other' priority species. Threatened species are taken to mean those listed under the schedules of the Tasmanian *Threatened Species Protection Act 1995* or *Commonwealth Environment Protection and Biodiversity Conservation Act 1999*. Other priority species are currently defined as non-listed Regional Forest Agreement (RFA) priority species, some significant non-listed fauna species, hollow dwelling species as a habitat-based group, and poorly reserved flora species (Lawrence *et al.* 2008<sup>1</sup>).

The REM models species habitat using two methods – one based on rules applied to records of flora and fauna species in the Natural Values Atlas (NVA); the other as more detailed models for particular fauna species whose habitat is more complex than can be readily generated from NVA records.

The species modelled from NVA records include all listed threatened species, non-listed RFA priority species, some non-threatened but significant fauna species and poorly reserved flora species. The models are described in section 3.2.1.3 of the main report and detailed for each modelled species in Attachment 6.

The point-based modelling works reasonably well for a large proportion of threatened flora species and for some aspects of fauna species habitat (e.g. known nest sites of some bird species), particularly where the species is sessile. However, they are less suited for modelling the habitat of fauna which are wide ranging or whose habitat is affected by a wider range of variables than those described above.

Models of selected fauna species were therefore refined and/or developed to incorporate into the REM. The work to was undertaken concurrently with other projects which are similarly seeking to provide a higher spatial resolution of fauna habitat, and may therefore need to be revised in the future. Other projects addressing fauna species models include extrapolation of descriptions of species range and habitat to include significant habitat determinations for the Forest Practices System<sup>2</sup>, and also work being undertaken by the Centre for Environment on modelling birds, mammals and reptiles in the Midlands.

The approach used to develop species models for the REM was an expert-based rules system in which the characteristics of each species are described from current knowledge and available data, which are in turn converted to GIS-based rules to achieve spatial outputs. There are a number of issues associated with the choice of approach.

<sup>&</sup>lt;sup>1</sup> Lawrence, N., Storey, D. & Whinam, J. (2008). Reservation status of Tasmanian native higher plants. February 2008, Biodiversity Conservation Branch, Department of Primary Industries & Water, Hobart. http://www.dpiw.tas.gov.au/inter.nsf/WebPages/LJEM-7CW3RX?open

<sup>&</sup>lt;sup>2</sup> Forest Practices Authority (2014). Summary of threatened fauna species range boundaries and habitat descriptions. v1.7 August 2013, Forest Practices Authority, Hobart. Table is an updated summary of information in Forest Practices Authority and Threatened Species Section (2012). Review of Threatened Fauna Adviser: background report 2: Review of information on species & management approach. Forest Practices Authority, Hobart.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.
Constant advances in scientific understanding are resulting in progressive and ongoing improvements in Tasmanian species modelling. Like any other time-bound project, Forestry Tasmania's HCV Assessment will use the best available models of the day, fully conscious that better models will continue to be developed into the future. There are many methods for modelling species habitat, and it was not possible within the timeframes to develop and test other modelling systems.

The expert rules approach is considered to offer advantages in the context of an FSC certification process. Explicit and transparent sets of rules for species habitat are more accessible both auditors for determining compliance with standards, and to stakeholders who will be engaged through the certification process.

There is a wide range of Tasmanian fauna species for which better models of habitat are desirable. In the context of Forestry Tasmania's management obligations, the species which have been prioritised for attention are those for which similar work is being undertaken for incorporation into the Forest Practices Authority's (FPA) Threatened Fauna Advisor<sup>3</sup>.

The species being considered in that process have been described in terms of their:

- core range;
- potential range;
- known range;
- potential habitat;
- significant habitat; and
- other habitat definitions used in management.

Definitions of these attributes are shown in Table 1. These definitions have been adopted as a starting point for the present work. It should be noted that the FPA document available at the time of commencement of the modelling process was v1.4, which transitioned to v1.7 by the time of completion. Notes for the above categories have been updated to those in v1.7 and the nature of changes since v1.4 noted.

A large number (n = ~80) of the fauna species being addressed by the FPA also have spatial habitat models developed for use by the Private Forest Reserves Program (CARSAG, 2004<sup>4</sup>). The habitat descriptors in these species models were based largely on a range of reports prepared during the RFA process, and on some models generated using the CORTEX program and subsequently accredited for RFA use. These models have also been incorporated into the information stream used to develop models for the REM.

<sup>&</sup>lt;sup>3</sup> Forest Practices Authority (2014). Summary of threatened fauna species range boundaries and habitat descriptions. v1.7 August 2013. Forest Practices Authority, Hobart.

<sup>&</sup>lt;sup>4</sup> Comprehensive, Adequate & Representative Scientific Advisory Group (2004). Assessing reservation priorities for private forested land in Tasmania. Private Forest Reserves Program, Department of Primary Industries, Water & Environment, Hobart.

The facet of species habitat which the REM aims to model is probably closest to the FPA descriptor of "significant habitat". However, the term "REM habitat' has been used to avoid confusion with the work being undertaken on significant habitat for regulation under the Forest Practices System. In practice it is anticipated that substantial consistency between habitat definitions will be achieved.

In the context of FT's FSC certification, it is expected that HCVs related to threatened species are most likely to be defined from interpretations of REM habitat. However, it should be noted that HCV determination for FSC certification purposes is not an analogue for management that meets the requirements of the Forest Practices system, which is assessed separately within the FSC in terms of demonstrating legal and regulatory compliance.

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core range                | Encompasses the area, within the known range, known to support the highest densities of the species and/or thought to be of highest importance for the maintenance of breeding populations of the species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential<br>range        | Includes the known range, but also includes the area within which the species has not been found but may occur based on environmental conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Known range               | Is the area within which the species is most likely to occur, being the area of land within a minimum convex polygon of all known localities of the species. This term is synonymous with 'extent of occurrence' as referred to in the Guidelines for Eligibility for Listing under the Threatened Species Protection Act 1995 (DPIW 2008 <sup>5</sup> ).                                                                                                                                                                                                                                                                                                                                                  |
| Potential<br>habitat      | Is all habitat types within the potential range of a species that are likely to support that species<br>in the short and/or long term. It may not include habitats known to be occupied intermittently<br>(e.g. occasional foraging habitat only). Potential habitat is determined from published and<br>unpublished scientific literature and/or expert opinion, and is agreed by the Threatened<br>Species Section (DPIPWE) in consultation with species' specialists.                                                                                                                                                                                                                                   |
| Significant<br>habitat    | Is habitat within the known range of a species that (1) is known to be of high priority for the maintenance of breeding populations throughout the species' range and/or (2) conversion of which to non-native vegetation is considered to result in a long term negative impact on breeding populations of the species. It may include areas that do not currently support breeding populations of the species but need to be maintained to ensure the long-term future of the species. Significant habitat is determined from published and unpublished scientific literature and/or expert opinion, and is agreed by the Threatened Species Section (DPIPWE) in consultation with species' specialists. |
| Other habitat definitions | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 1. Draft range and habitat definitions for Threatened Fauna Advisor

<sup>&</sup>lt;sup>5</sup> Department of Primary Industries, Parks, Water & Environment (2008). Guidelines for the listing of species under the Tasmanian Threatened Species Protection Act 1995. Revised guidelines as at 29/10/08, Department of Primary Industries, Parks, Water & Environment, Hobart. http://www.dpiw.tas.gov.au/inter,nsf/Attachments/LBUN-59X7G2?open

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

The section which follows summarises each species in terms of:

- the range and habitat descriptions drafted for the Threatened Fauna Advisor;
- habitat model descriptions developed for the Private Forest Reserve Program by CARSAG;
- other habitat information that is considered relevant;
- a draft description of REM habitat model for the species;
- notes on issues identified in the development of each model; and
- data input requirements and spatial format of finalised models (NVA records, FPA/TSU range polygons and Tasveg or updated vegetation mapping from the NRP Atomic Planning Units layer are assumed for all species).

Comments on a draft version of the models were obtained from the Forest Practices Authority and Threatened Species Section of the Department of Primary Industries, Parks, Water and Environment. The response and any subsequent changes to the draft models arising from the comments are stored in a separate file.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

#### 2. Species habitat descriptors and models

#### 2.1 Birds

#### Species: Azure Kingfisher *Ceyx azureus* subsp. *diemenensis*

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Core range                | The core range of the azure kingfisher species is major river systems (class 1 and 2 as per the Forest Practices Code) in western coastal areas between Latrobe and Geeveston, with permanent deep flowing water and intact riparian vegetation.                                                                                                                                                                                                                              |
| Potential range           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential<br>habitat      | Potential habitat for the azure kingfisher comprises potential foraging habitat and potential breeding habitat. Potential foraging habitat is primarily freshwater (occasionally estuarine) waterbodies such as large rivers and streams with well-developed overhanging vegetation suitable for perching and water deep enough for dive-feeding. Potential breeding habitat is usually steep banks of large rivers (a breeding site is a hole (burrow) drilled in the bank). |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REM habitat<br>model      | <ol> <li>Known nest sites.) Removed from model in response to comments.</li> <li>Native riparian vegetation within one kilometre of known locations that is on class 1 or class 2 streams, or fringing waterbodies or estuaries.</li> <li>Native riparian vegetation that is within 2 kilometres of known locations within the Core Range that is on class 1 or class 2 streams, or fringing waterbodies or estuaries.</li> </ol>                                             |
| Notes                     | No nesting sites are currently recorded in the NVA.<br>Native riparian vegetation is taken to mean Tasveg native vegetation classes within the<br>distances prescribed for class 1-4 streams in the Forest Practices Code.                                                                                                                                                                                                                                                    |
| Data                      | Habitat to be generated within the REM process using NVA records with positional accuracy <1,000 m.                                                                                                                                                                                                                                                                                                                                                                           |
| Model status:             | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Species: Forty-spotted Pardalote Pardalotus quadragintus

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                              |
| Core range                | The core range of the 40- spotted pardalote is a 500 m (radius) buffer centred on the boundary of all mapped colonies.                                                                                                                                                                                                                                                       |
| Potential range           | The potential range of the 40-spotted pardalote is mainland Tasmania between Southport<br>and Bicheno within 5 km of the coast, and some offshore islands. The survey range of the<br>40-spotted pardalote is a specialist defined area within the potential range delineated to<br>assist with decisions on the need for a survey (most areas are close to known colonies). |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                          |
| Potential<br>habitat      | Potential habitat for the 40-spotted pardalote is any forest and woodland supporting <i>Eucalyptus viminalis</i> (white gum) where the canopy cover of <i>E. viminalis</i> is greater than or equal to 10% or where <i>E. viminalis</i> occurs as a localised canopy dominant or co-dominant in patches exceeding 0.25 ha.                                                   |
| Significant<br>habitat    | Significant habitat for the 40- spotted pardalote is all potential habitat associated with known colonies and such habitat within 500 m of known colonies.                                                                                                                                                                                                                   |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                          |
| CARSAG<br>habitat model   | Eucalypt forests around colonies as mapped by Brown (1986 <sup>6</sup> ) on Bruny Island or 500 m of known colonies elsewhere.                                                                                                                                                                                                                                               |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                          |
| REM habitat<br>model      | <ol> <li>Known colonies and all land within 200 m of the boundary of known colonies, excluding<br/>Tasveg "O" communities.</li> <li>Habitat comprises all contiguous eucalypt forest within one kilometre of colonies, with a<br/>threshold for contiguity of 90 m.</li> </ol>                                                                                               |
| Notes                     | <i>E. viminalis</i> is sub-dominant in nearly all dry eucalypt communities in the species range, hence modelling of the potential habitat is problematic.<br>The 90 m threshold for contiguity ensures 100 m is the effective contiguous distance due to the spacing of data points in the REM.                                                                              |
| Data                      | Habitat to be generated within the REM process using spatial data on known colonies and available vegetation mapping (Tasveg or updated vegetation where available).                                                                                                                                                                                                         |
| Model status:             | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                            |

<sup>&</sup>lt;sup>6</sup> Brown, P.B. (1986). The Forty-spotted Pardalote in Tasmania. Technical report 86/4, National Parks & Wildlife Service, Tasmania.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

#### Species: King Island Brown Thornbill Acanthiza pusilla subsp. archibaldi

| Species attribute         | Definition                                                                                                                                                                                                                                              |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                         |
| Core range                | The core range of the King Island brown thornbill is Pegarah State Forest.                                                                                                                                                                              |
| Potential range           | The potential range of the King Island brown thornbill is the whole of King Island.                                                                                                                                                                     |
| Known range               | N/A                                                                                                                                                                                                                                                     |
| Potential habitat         | Potential habitat for the King Island brown thornbill is eucalypt forest, woodland, tea tree thickets, and wet scrub (including remnants amongst farmland).                                                                                             |
| Significant habitat       | N/A                                                                                                                                                                                                                                                     |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                     |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                                                                                                     |
| Other<br>information      | N/A                                                                                                                                                                                                                                                     |
| REM habitat<br>model      | Native vegetation within and adjacent to the Core Range, excluding the Tasveg community SSK.                                                                                                                                                            |
| Notes                     | There are only 2 NVA records of this species with accuracy <1,000 m. One is dated 1968 and the other unknown.<br>SSK has been excluded from the model as this is generally more open and not considered to provide much in the way of suitable habitat. |
| Data                      | Data is a set of polygons based on Tasveg mapping and stored in the NRP Atomic Planning Units layer.                                                                                                                                                    |
| Model status:             | Model has been constructed within APU version 723 onward.<br>Full spatial extent of model can be extracted as a separate layer.<br>Model tested and used in the REM.                                                                                    |

#### Species: King Island Green Rosella Platycercus caledonicus brownii

| Species attribute         | Definition                                                                                                                        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                   |
| Core range                | The core range of the King Island green rosella is Pegarah State Forest and surrounding forests.                                  |
| Potential range           | The potential range of the King Island green rosella is the whole of King Island.                                                 |
| Known range               | N/A                                                                                                                               |
| Potential habitat         | Potential habitat for the King Island green rosella is any forest (primarily with a eucalypt canopy) supporting suitable hollows. |
| Significant habitat       | N/A                                                                                                                               |
| Other habitat definitions | N/A                                                                                                                               |
| CARSAG habitat<br>model   | N/A                                                                                                                               |
| Other information         | N/A                                                                                                                               |

| REM habitat  | (1. Known nest sites.) Removed from model.                                                   |
|--------------|----------------------------------------------------------------------------------------------|
| model        | <ol><li>Eucalypt forest on King Island with a biophysical naturalness class &gt;1.</li></ol> |
|              | 3. PI codes with a mature eucalypt element, including in non-forest vegetation.              |
| Notes        | Nesting habitat is the limiting factor for the species.                                      |
| Data         | PI-type data of eucalypt maturity for King Island.                                           |
|              | Data will be generated as part of the REM process.                                           |
| Model status | Model tested and used in the REM.                                                            |

#### Species: King Island Scrub Tit Acanthornis magna subsp. greeniana

| Species attribute         | Definition                                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                      |
| Core range                | The core range of the King Island scrub tit is the Nook Swamps, Colliers Swamp and Pegarah State Forest.                             |
| Potential range           | The potential range of the King Island scrub tit is the whole of King Island.                                                        |
| Known range               | Potential habitat for the King Island scrub tit is wet sclerophyll forest and swamp forest (including remnants).                     |
| Potential habitat         | N/A                                                                                                                                  |
| Significant habitat       | N/A                                                                                                                                  |
| Other habitat definitions | N/A                                                                                                                                  |
| CARSAG habitat            | N/A                                                                                                                                  |
| model                     |                                                                                                                                      |
| Other                     | Ν/Α                                                                                                                                  |
| Information               |                                                                                                                                      |
| REM habitat               | 1. Wet eucalypt forest, swamp forests and wet scrubs within the core range, plus                                                     |
| model                     | <ol> <li>Where not 1, contiguous wet eucalypt forest, swamp forest and wet scrub within one kilometre of known locations.</li> </ol> |
| Notes                     | The NVA record location at Pegarah is outside the State Forest and the Core Range                                                    |
|                           | Swamp forests and scrub comprise the Tasveg codes NME, SLW, SMR and SSK.                                                             |
|                           | Scrubs occur in a mosaic in the core range in association with wetlands, and a significant                                           |
|                           | proportion of records are located in vegetation mapped as scrub.                                                                     |
|                           | Model 2 addresses habitat at the known location on the Sea Elephant River (NVA obs. 1245790).                                        |
| Data                      | Data is a set of polygons based on Tasveg mapping and stored in the NRP Atomic                                                       |
|                           | Planning Units layer, which will be transferred into the REM.                                                                        |
| Model status              | Model has been constructed within APU version 723 onward.                                                                            |
|                           | Full spatial extent of model can be extracted as a separate layer.                                                                   |
|                           | Model tested and used in the REM.                                                                                                    |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

#### Species: Grey Goshawk Accipiter novaehollandiae

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FPA                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| attributes                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Core range                | The core range of the grey goshawk is a specialist defined area (N. Mooney, unpublished data) based on the availability of potential and significant habitat and known breeding records.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Potential range           | The potential range of the grey goshawk is the whole of mainland Tasmania.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Potential<br>habitat      | Potential habitat for the grey goshawk is native forest with mature elements below 600 m altitude, particularly along watercourses. FPA's Fauna Technical Note 12 <sup>7</sup> can be used as a guide in the identification of grey goshawk habitat (v1.5 update of FPA document).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Significant<br>habitat    | Significant habitat may be summarised as areas of wet forest, rainforest and damp forest patches in dry forest, with a relatively closed mature canopy, low stem density, and open understorey in close proximity to foraging habitat and a freshwater body (i.e. stream, river, lake, swamp, etc.). FPA's Fauna Technical Note 12 can be used as a guide in the identification of grey goshawk habitat. (v1.5 update of FPA document).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CARSAG<br>habitat model   | High quality foraging habitat comprising: (i) riparian and swamp (BF, ME, L) forests within<br>5km of nest sites; (ii) swamp and riverine forests in King bioregion; and (iii) riverine forests<br>on maps at the base of the Great Western Tiers. All with Use_bn = 3-5. APU v4.2 data<br>substituted where Tasveg mapping not available. King Island record not accepted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| information               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| REM habitat<br>model      | <ol> <li>Native riparian vegetation within 500 m of known nest sites, excluding vegetation types that are low and/or open (Tasveg grasslands, saltmarsh and wetlands).</li> <li>Areas that are not in the northwest Core Range (NVA data) and are within 5km of known nest sites and within 100 m of freshwater features (LIST watercourse, waterbody, wetlands), or on LIST floodplains, and are:         <ul> <li>(i)Tasveg wet eucalypt forest (Tasveg W) which is old growth, mature or predominantly mature (PI-data) with biophysical naturalness classes 3, 4 or 5; or</li> <li>(ii) rainforest (RMT, RMS) swamp forests (NAF, NAR) with biophysical naturalness classes 3, 4 and 5.</li> <li>Foraging habitat in the northwest of the State is areas in the Core Range polygon of the following Tasveg classes that are within 100 m of a water course: <i>Acacia melanoxylon</i> swamp forest (NAF), <i>Acacia melanoxylon</i> forest on rises (NAR), <i>Leptospermum scoparium-Acacia mucronata</i> forest (NAL), <i>Leptospermum</i> forest (NLE), <i>Leptospermum lanigerum-Melaleuca squarrosa</i> swamp forest (NLM), <i>Melaleuca ericifolia</i> swamp forest (NME) that have had little or no known disturbance from fire or harvesting, as evidenced by mapping in biophysical naturalness classes 3, 4 and 5.</li> </ul> </li> </ol> |
| Notes                     | Distance within known nest sites is used here as a surrogate for core populations.<br>Species occurrences outside of this area are assumed more likely to be juveniles ejected<br>from the parental territory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

<sup>&</sup>lt;sup>7</sup> Forest Practices Authority (2011). Goshawk habitat categories. Fauna Technical Note 12 v2.1, Forest Practices Authority, Hobart, Tasmania.

http://www.fpa.tas.gov.au/\_\_data/assets/pdf\_file/0005/58046/Fauna\_Tech\_Note\_12\_Goshawk\_habitat\_categorie <a href="mailto:s.pdf">s.pdf</a>

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data                 | To be derived within the REM process using inputs from the Atomic Planning Units layer<br>(vegetation communities, biophysical naturalness, old growth), PI-type data (maturity) and<br>LIST Hydarea layer (watercourses (1D and 2D), waterbodies, wetlands, floodplains). |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                          |

#### Species: Masked Owl *Tyto novaehollandiae* subsp. *castanops*

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Core range                | The core range of the masked owl is forest that occurs at low elevation (<600 m a.s.l.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Potential range           | The potential range of the masked owl is the whole state, except Bass Strait islands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Potential<br>habitat      | Potential habitat for the masked owl is all areas with trees with large hollows (≥15 cm entrance diameter). In terms of using mapping layers, potential habitat is considered to be all areas with at least 20% mature eucalypt crown cover (PI-type mature density class 'a', 'b', or 'c'). From on-ground surveys this is areas with at least 8 trees per hectare over 100 cm dbh.                                                                                                                                                                                                                                                                                                                                                                                                            |
| Significant<br>habitat    | Significant habitat for the masked owl includes native dry forest areas with trees with large hollows (≥15 cm entrance diameter) that are mostly mature with no or little regrowth component. In terms of using mapping layers, significant habitat is considered to be all areas of dry forest (TASVEG dry Eucalypt forest and woodland) with at least 20% mature eucalypt crown cover (PI-type mature density class 'a', 'b', or 'c') that is classified as mature (Growth Stage class 'M'). From on-ground surveys this is areas with at least 8 trees per hectare over 100 cm dbh and more than half of the canopy cover is comprised of mature trees. Remnants and paddock trees in agricultural areas may also constitute significant habitat. (v1.5 update of FPA document – see Notes). |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CARSAG<br>habitat model   | Nests and roosts: APUs within a 300 m radius of known nest and roost sites likely to contain trees suitable for nesting or roosting within 100 m of nest or roost sites, based on Bell <i>et al.</i> (1997 <sup>8</sup> ) with some records excluded, plus some recent nest and roost sites. Inclusion: native forest and woodland; non-forest vegetation with sparse eucalypt overstorey. Exclusion: recently cleared (cr) codes, non-forest vegetation lacking sparse eucalypt overstorey (data categories from v1.0 and v1.2 Tasveg). Territories: APUs of native and partly natural vegetation within 1,300 m of revised nest and roost sites (therefore extends beyond). Exclusions: Use_BN = 0, Water and plantations.                                                                    |
| Other<br>information      | Species habitat descriptions from PhD by Todd (2012 <sup>9</sup> ) via email "Basically, low elevation forest (less than 575 m) is very important. Mature eucalypt forest, also important. Dry forest better than wet forest but this isn't quite so important." Species model from thesis also sourced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

 <sup>&</sup>lt;sup>8</sup> Bell, P., Mooney, N. & Wiersma, J. (1997). Predicting essential habitat for forest owls in Tasmania. Report to the Tasmanian Regional Forest Agreement Environment & Heritage Technical Committee, January 1997.
 <sup>9</sup> Todd, M.K. (2012). Ecology & habitat of a threatened nocturnal bird, the Tasmanian Masked Owl. PhD thesis, University of Tasmania, Hobart.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REM habitat<br>model | <ol> <li>Known nest and roost sites: all areas within 100 m of known nests and roosts.</li> <li>Potential breeding habitat is old growth, mature or predominantly mature forests within the Todd model, that are:         <ol> <li>medium, high or very high model class, within 5 km of known nest sites; or</li> <li>within the high or very high model class.</li> </ol> </li> </ol>                                                   |
| Notes                | Important breeding habitat is most likely to occur in areas within accessible distance to hunting grounds. Among the major prey species, 88% of NVA bandicoot (both species) records occur on land systems which are characteristically 0-300 m altitude. Large trees suitable for nest sites are difficult to map from available PI-type data and its derivatives (e.g. mature habitat map), as only a single suitable tree is required. |
| Data                 | PI-type maturity and regrowth data.<br>NRP land systems components data.<br>Additional data generated with scripting embedded in the REM process.                                                                                                                                                                                                                                                                                         |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Known issues         | V1.5 update of the FPA document changed significant habitat to dry forest only. This change occurred after the model was developed.                                                                                                                                                                                                                                                                                                       |

### Species: Orange-bellied Parrot

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA                       |                                                                                                                                                                                                                                                                                                                                             |
| attributes                |                                                                                                                                                                                                                                                                                                                                             |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                         |
| Potential range           | The potential range of the orange-bellied parrot comprises the potential foraging range and the potential breeding range. [still to be developed]                                                                                                                                                                                           |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                         |
| Potential<br>habitat      | Potential habitat for the orange-bellied parrot comprises potential breeding habitat and potential foraging habitat. Potential breeding habitat is mature eucalypt forest and woodland, including copses amongst plains, with obvious hollows present. Potential foraging habitat is dunes, heathlands, coastal grasslands and saltmarshes. |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                         |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                         |
| CARSAG                    | N/A                                                                                                                                                                                                                                                                                                                                         |
| habitat model             |                                                                                                                                                                                                                                                                                                                                             |
| Other                     | Additional information on the species is contained in the Orange-bellied Parrot recovery                                                                                                                                                                                                                                                    |
| information               | plan (2006 <sup>10</sup> ), which includes a map of the Breeding Range and Non-breeding Range in                                                                                                                                                                                                                                            |
|                           | Tasmania:                                                                                                                                                                                                                                                                                                                                   |
|                           | "Eucalypt forest (in the breeding range) saltmarshes, coastal dunes, pastures, shrublands,                                                                                                                                                                                                                                                  |

Neophema chrysogaster

<sup>&</sup>lt;sup>10</sup> Orange-belled Parrot Recovery Team (2006). National recovery plan for the Orange-bellied Parrot (*Neophema chrysogaster*). Threatened Species Section, Department of Primary Industries & Water, Hobart. <u>http://www.environment.gov.au/system/files/resources/f493ebf4-a19b-412c-ac15-413b7d413a69/files/orange-bellied-parrot-recovery.pdf</u>

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| Species              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute            | estuaries, islands, beaches and moorlands, usually within ten kilometres of the coast, make<br>up the diverse habitats used by Orange-bellied Parrots.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | Breeding habitat is a mosaic of eucalypt forest, rainforest, and extensive fire dependant moorland and sedgeland plains, intersected by wooded creeks, rivers and estuaries within the Tasmanian Wilderness World Heritage Area (Brown and Wilson 1982, 1984; Stephenson 1991). Nesting occurs predominantly in the hollows of live Smithton Peppermint <i>Eucalyptus nitida</i> in patches of forest throughout coastal southwest Tasmania, but focussed within 20 km of Melaleuca and 5km of Birch's Inlet (Brown and Wilson 1984; Higgins 1999). The entire known breeding population is contained within the Tasmanian Wilderness World Heritage Area (in particular the Southwest National Park) and Southwest Conservation Area. |
|                      | On passage in western and northwestern Tasmania (including offshore islands) the species occurs in dunes, heathland, coastal grasslands, saltmarsh and pasture. On King Island, they mostly occur in saltmarsh dominated by Beaded Glasswort <i>Sarcocornia quinqueflora</i> , flanked by tall dense Swamp Paperbark <i>Melaleuca ericifolia</i> forest (Higgins 1999)." p3 of Recovery Plan                                                                                                                                                                                                                                                                                                                                           |
| REM habitat<br>model | <ol> <li>Breeding habitat for the species is native vegetation containing mature forest elements<br/>(any density) in the breeding range, as defined in the 2006 Recovery Plan.</li> <li>Foraging habitat is vegetation communities in the species inclusion list (see below) within<br/>either the breeding range or the foraging range, based on the map and description in the<br/>2006 Recovery Plan.</li> </ol>                                                                                                                                                                                                                                                                                                                   |
| Notes                | The inclusions list for the species is the Tasveg communities in which the species has been recorded in the NVA since 1983 at accuracy <=500 mm and that are consistent with the descriptions of the foraging habitat: ARS ASS, AUS, AWU, GHC, MBS, SCA, SSC and SSK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data                 | Breeding range polygon generated from map in 2006 Recovery Plan.<br>Foraging range polygon (outside of the breeding range) generated from the map and<br>descriptions in the 2006 Recovery Plan, comprising the Breeding range, 10km inland of the<br>coast from Veridian Point (SW Tas) to Sisters Beach (NW Tas), and King, Hunter, Three<br>Hummock, Walker, Robbins and Perkins Islands.<br>Vegetation mapping from Tasveg and/or NRP Atomic Planning Units data.                                                                                                                                                                                                                                                                  |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

#### Species: Swift Parrot Lathamus discolor

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FPA<br>attributes         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Core range                | The core breeding range of the swift parrot is the area within the SE potential breeding range that is within 10km of the coast or is designated as a SPIBA (as defined in FPA 2010).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Potential range           | The potential breeding range of the swift parrot comprises the NW potential breeding range<br>and the SE potential breeding range. The NW potential breeding range includes the NW<br>breeding areas (known nesting locations e.g. Gog Range, Badger Range, Kelsey Tier).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Potential<br>habitat      | Potential breeding habitat for the swift parrot comprises potential foraging habitat and potential nesting habitat, and is based on definitions of foraging and nesting trees (see Table A in swift parrot habitat assessment. Potential foraging habitat comprises <i>E. globulus</i> or <i>E. ovata</i> trees that are old enough to flower. The occurrence of foraging habitat can be remotely assessed, although only to a limited extent, by using mapping layers such as GlobMap (DPIPWE 2010 <sup>11</sup> ). Due to the scale and inadequacies in current foraging-habitat mapping, potential foraging-habitat density within operational areas may need to be largely identified by ground based surveys as per Table B in the draft swift parrot habitat is considered to comprise eucalypt forests that contain hollow-bearing trees. The FPA mature habitat availability map (see FPA's Fauna Technical Note 2 <sup>12</sup> ) predicts the availability of hollow bearing trees using the relevant definitions of habitat provided in Table C of the draft swift parrot habitat assessment Technical Note. The mature habitat availability map is designed to be used to make landscape-scale assessments and may not be reliable for stand-level assessments required during the development of a forest practices plan. At the stand-level the availability and distribution of hollow-bearing trees across a coupe or operation area is best determined from a ground-based assessment (see Table C in the draft Swift parrot habitat assessment technical note). |
| Significant<br>habitat    | Significant habitat is all potential breeding habitat within the SE potential breeding range and the NW breeding areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CARSAG<br>habitat model   | Swift Parrot foraging habitat. APUs of <i>E. globulus</i> grassy forest and <i>E. ovata/E. viminalis</i> shrubby forest intersecting the modelled distribution of the species. Model is as defined as a single polygon in the file Swiftglob.shp, supplied by Ray Brereton and John Ashworth, plus all APUs of the two forest types within 5km.<br>Swift Parrot nest sites: All forested APUs with good biophysical naturalness characteristics within 300 m of nest locations reported in Brereton (1997 <sup>13</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>&</sup>lt;sup>11</sup> Biodiversity Conservation Branch (2010). Globmap, the Swift Parrot foraging habitat map. Department of Primary Industries, Parks, Water & Environment, Hobart.

<sup>&</sup>lt;sup>12</sup> Koch, A. (2011). Explanatory notes on the mapping of areas that potentially contain mature forest characteristics (the 'mature habitat availability map'). Fauna Technical Note 2, Forest Practices Authority, Hobart.

<sup>&</sup>lt;sup>13</sup> Brereton, R. (1997). Management prescriptions for the Swift Parrot in production forests. Report to the Tasmanian Regional Forest Agreement Environment & Heritage Technical Committee, June 1997.

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REM habitat<br>model | <ol> <li>Known nest sites: Areas within 300 m of known nest sites (NVA data).</li> <li>Foraging habitat: <i>E. ovata</i> (DOV, DOW) or <i>E. globulus</i> forests (DGL, WGL) with biophysical naturalness class 2-5 within the South East Core Range and North West breeding area. Also includes areas mapped in the Globmap project as having 20-50% of individuals in a stand as <i>E. globulus</i> that are not biophysical naturalness class 1 or silvicultural regeneration.</li> <li>Breeding habitat: Areas of eucalypt forest in the south East Core Range and North West breeding area which are old growth, mature or predominantly mature in PI-type mapping.</li> </ol> |
| Notes                | Biophysical naturalness class 1 is excluded from foraging habitat, as trees are assumed to be too small to flower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data                 | Foraging habitat stored as a set of polygons in the NRP Atomic Planning Units layer, which includes Tasveg, GlobMap and other field-based mapping.<br>Breeding habitat to be generated using scripting embedded in the REM process.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Species: Wedge-tailed Eagle (nest sites) Aquila audax subsp. fleayi

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Potential range           | The potential range of the wedge-tailed eagle is the whole of Tasmania including islands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Potential<br>habitat      | Potential habitat for the wedge-tailed eagle comprises potential nesting habitat and<br>potential foraging habitat. Potential foraging habitat is a wide variety of forest (including<br>areas subject to native forest silviculture) and nonforest habitats. Potential nesting habitat<br>is tall eucalypt trees in large tracts (usually more than 10 ha) of eucalypt or mixed forest.<br>Nest trees are usually amongst the largest in a locality. They are generally in sheltered<br>positions on leeward slopes, between the lower and mid sections of a slope and with the top<br>of the tree usually lower than the ground level of the top of the ridge, although in some<br>parts of the State topographic shelter is not always a significant factor (e.g. parts of the<br>northwest and Central Highlands). Nests are usually not constructed close to sources of<br>disturbance and nests close to disturbance are less productive. More than one nest may<br>occur within a territory but only one is used for breeding in any one year. Breeding failure<br>often promotes a change of nest in the next year. [see Part I of the FPA Biodiversity Values<br>Database, FPA's Fauna Technical Note 1 and nesting habitat model (e.g. State Forest Eagle<br>Potential Nesting layer) for more information] |
| Significant<br>habitat    | Significant habitat for the wedge tailed eagle is all native forest and native non-forest vegetation within 500 m or 1 km line-of-sight of known nest sites (where the nest tree is still present).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CARSAG<br>habitat model   | Approximately 500 m around known nest sites (depending on noise arising from GIS intersection of vegetation polygons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| REM habitat<br>model | All areas within 500 m of known nest sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes                | The 1,000 m line of sight provision is excluded from the REM due to complexity of inclusion<br>in the REM architecture.<br>It is assumed this requirement will be met through operational provisions.<br>The FPA criterion of including only native forest and native non-forest is not supported, as<br>the sensitivity of the zone around the nest is to disturbance and has not been reported as<br>sensitive to habitat type.<br>Determination of the presence of the nest tree will be either from NVA data (see below) or<br>dealt with through operational provisions. |
| Data                 | Habitat is generated through the REM process based on a subset of NVA point locations identified as nest sites (project code "RND", observation type "nest", and notes not indicating nest lost or destroyed).                                                                                                                                                                                                                                                                                                                                                                |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Species: White-bellied Sea Eagle (nest sites) Haliaeetus leucogaster

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential range           | The potential range of the white-bellied sea eagle is the whole of Tasmania including islands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential<br>habitat      | Potential habitat for the white-bellied sea-eagle species comprises potential nesting habitat<br>and potential foraging habitat. Potential foraging habitat is any large waterbody (including<br>sea coasts, estuaries, wide rivers, lakes, impoundments and even large farm dams)<br>supporting prey items (fish). Potential nesting habitat is tall eucalypt trees in large tracts<br>(usually more than 10 ha) of eucalypt or mixed forest within 5 km of the coast (nearest coast<br>including shores, bays, inlets and peninsulas), large rivers (Class 1), lakes or complexes of<br>large farm dams. Scattered trees along river banks or pasture land may also be used. The<br>species nests and forages mainly near the coast but will also live near rivers, lakes and farm<br>dams. Nest trees are amongst the largest in a locality. Nests are not usually constructed<br>close to sources of disturbance and nests close to disturbance are less productive. More<br>than one nest may occur within a territory but only one is used for breeding in any one year.<br>Breeding failure often promotes a change of nest in the next year |
| Significant<br>habitat    | Significant habitat for the white-bellied sea eagle is all native forest and native non-forest vegetation within 500 m or 1 km line-of-sight of known nest sites (where the nest tree is still present).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CARSAG<br>habitat model   | Approximately 500 m around known nest sites (depending on noise arising from GIS intersection of vegetation polygons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| REM habitat<br>model      | All areas within 500 m of known nest sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

15

| Notes        | The 1,000 m line of sight provision is excluded from the REM due to complexity of inclusion<br>in the REM architecture.<br>It is assumed this requirement will be met through operational provisions.<br>The FPA criterion of including only native forest and native non-forest is not supported, as<br>the sensitivity of the zone around the nest is to disturbance and has not been reported as<br>sensitive to habitat type.<br>Determination of the presence of the nest tree will be either from NVA data (see below) or<br>dealt with through operational provisions. |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data         | Habitat is generated through the REM process based on a subset of NVA point locations identified as nest sites (project code "RND", observation type "nest", and notes not indicating nest lost or destroyed).                                                                                                                                                                                                                                                                                                                                                                |
| Model status | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

#### 2.2 Fish

#### Species: Arthurs Paragalaxias Paragalaxias mesotes

| Species                   | Definition                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                                                                                                                                                                                                                                             |
| FPA attributes            |                                                                                                                                                                                                                                                                                                                             |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                         |
| Potential range           | The potential range of the Arthurs paragalaxias is the catchment of the lakes and other waterbodies where the species occurs (except where a specialist advises that part of the catchment is not important to the species).                                                                                                |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                         |
| Potential habitat         | Potential habitat for the Arthurs paragalaxias is all waterbodies including streams and riparian vegetation (including lakeside vegetation).                                                                                                                                                                                |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                         |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                         |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                                                                                                                                                                         |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                         |
| REM habitat<br>model      | <ol> <li>Native riparian vegetation within one kilometre of known locations on streams.</li> <li>Native riparian vegetation around the foreshores of Woods Lake and Arthurs lake, and<br/>the native riparian vegetation of streams entering the lakes up to a distance of one<br/>kilometre from the lake edge.</li> </ol> |
| Notes                     | There is a single NVA record from Tarraleah in the NVA. It is recorded as a museum specimen from 1976. This area will not be modelled for habitat.                                                                                                                                                                          |
| Data                      | NRP Atomic Planning Units data layer.<br>LIST Hydline and Hydarea layer.                                                                                                                                                                                                                                                    |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                           |

#### Species: Australian Grayling Prototroctes maraena

| Species<br>attribute   | Definition                                                                                                                                                                                                                      |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes         |                                                                                                                                                                                                                                 |
| Core range             | N/A                                                                                                                                                                                                                             |
| Potential range        | The potential range for the Australian grayling is coastal river systems (Davies, unpubl. data).                                                                                                                                |
| Known range            | N/A                                                                                                                                                                                                                             |
| Potential habitat      | Potential habitat for the Australian grayling is all streams and rivers in their lower to middle reaches. Areas above permanent barriers (e.g. Prosser River dam, weirs) that prevent fish migration are not potential habitat. |
| Significant<br>habitat | N/A                                                                                                                                                                                                                             |

17

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                 |
| CARSAG habitat<br>model   | APUs 2km upstream and downstream of recorded locations (or to coast).                                                                                                                                                                                                                                               |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                 |
| REM habitat<br>model      | <ol> <li>Class 1 and Class 2 streams in CFEV river section catchments with maximum altitude</li> <li>250 m that are in CFEV subcatchments in which the species has been recorded, and associated riparian zones.</li> <li>Note: The includes all riparian zones, not just those under native vegetation.</li> </ol> |
| Notes                     | All records with accuracy <=200 m occur on Class 1 or Class 2 streams, or in other aquatic environments such as                                                                                                                                                                                                     |
| Data                      | CFEV river section catchment and subcatchments data.                                                                                                                                                                                                                                                                |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                   |

#### Species: Clarence Galaxias Galaxias fontanus

| Species                   | Definition                                                                                                                                                                                                                                                                                               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                          |
| FPA attributes            |                                                                                                                                                                                                                                                                                                          |
| Core range                | N/A                                                                                                                                                                                                                                                                                                      |
| Potential range           | The potential range of the Clarence galaxias is the catchment of the lakes and other waterbodies where the species occurs (except where a specialist advises that part of the catchment is not important to the species).                                                                                |
| Known range               | N/A                                                                                                                                                                                                                                                                                                      |
| Potential<br>habitat      | The potential range of the Clarence galaxias is the catchment of the lakes and other waterbodies where the species occurs (except where a specialist advises that part of the catchment is not important to the species).                                                                                |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                      |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                      |
| CARSAG<br>habitat model   | APUs intersecting the locations of all populations as described in the Threatened Species<br>Listing Statement for the species at and to the north of Clarence Lagoon, Wentworth Hills,<br>Dyes Rivulet and Dyes Marsh, Tibbs Plain Marsh, Skullbone Plains and a tributary of the<br>Nive River.        |
| Other<br>information      | Important locations for the species are identified in the threatened species listing statement for the species.                                                                                                                                                                                          |
| REM habitat<br>model      | <ol> <li>Native riparian vegetation on streams within the Potential Range.</li> <li>Waterbodies identified in the species listing statement as important locations, and their associated riparian zones.</li> <li>Note: Wetlands are included in the definition of riparian zones in the REM.</li> </ol> |
| Notes                     | 62% of records are on Class 2 streams.<br>Average slope of stream beds is ~2 degrees, however SD and variance are relatively high.                                                                                                                                                                       |

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data                 | NRP Atomic Planning Units data.<br>FT Hydline layer attributed with FPA stream classes.<br>LIST Hydarea layer (for watercourse polygons).                                                                                                                                         |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                                 |
| Known issues         | DPIPWE advised on 30 January 2014 that it needs to develop a new range boundary involving a minor change to include one old data point not captured by the version used. This occurred after the model had been developed and may need to be incorporated into a future revision. |

#### Species: Dwarf Galaxias Galaxiella pusilla

| Species         | Definition                                                                                                                                                                          |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute       |                                                                                                                                                                                     |
| FPA             |                                                                                                                                                                                     |
| attributes      |                                                                                                                                                                                     |
| Core range      | The core range of the dwarf galaxiid incorporates known sites and the catchments above                                                                                              |
|                 | known sites.                                                                                                                                                                        |
| Potential range | The potential range of the dwarf galaxiid is the broader catchments defined by specialists where the species may occur and where surveys have not been conducted                    |
| Known range     | N/A                                                                                                                                                                                 |
|                 |                                                                                                                                                                                     |
| Potential       | Potential habitat for the dwarf galaxiid is slow-flowing waters such as swamps, lagoons,<br>drains or backwaters of streams, often with aquatic vegetation. It may also be found in |
| nabitat         | temporary waters that dry up in summer for as long as 6-7 months, especially if hurrowing                                                                                           |
|                 | cravfish burrows are present (although these will usually be connected to permanent water).                                                                                         |
|                 | Habitat may include forested swampy areas. Juveniles congregate in groups at the water                                                                                              |
|                 | surface in pools free of vegetation.                                                                                                                                                |
| Significant     | Significant habitat for the dwarf galaxiid is all potential habitat and a 30 m stream-side                                                                                          |
| habitat         | reserve within the core range.                                                                                                                                                      |
| Other habitat   | N/A                                                                                                                                                                                 |
| definitions     |                                                                                                                                                                                     |
| CARSAG          | APUs of riverine, wetland or water vegetation within 500 m of known locations, plus some                                                                                            |
| habitat model   | areas individually tagged.                                                                                                                                                          |
| Other           | N/A                                                                                                                                                                                 |
| information     |                                                                                                                                                                                     |
| REM habitat     | 1. LIST wetlands and 2D watercourses, and Tasveg wetlands, within the Core Range that are                                                                                           |
| model           | <50 m altitude.                                                                                                                                                                     |
|                 | 2. Native riparian vegetation on Class 1, 2 streams in the Core Range that are <50 m                                                                                                |
|                 | altitude.                                                                                                                                                                           |
|                 | 3. Native riparian vegetation on Class 3 and 4 streams in the Core Range that are <50 m                                                                                             |
|                 | altitude AND have a streambed slope (CFEV data) of <2 degrees.                                                                                                                      |
| Notes           | 82% of record locations that intersect stream buffers are on Class 2 streams.                                                                                                       |
|                 | All NVA records with an accuracy <=200 m are on CFEV river sections with a slope of <2                                                                                              |
|                 | degrees (CFEV data), and are also at <50 m altitude.                                                                                                                                |
| Data            | Vegetation data from NRP Atomic Planning Units.                                                                                                                                     |
|                 | LIST Hydarea layer.                                                                                                                                                                 |
|                 | CFEV river sections data (contains bed slope data).                                                                                                                                 |
| Model status    | Model tested and used in the REM.                                                                                                                                                   |

| Known issues | DPIPWE advised on 30 January 2014 that it needs to develop a new range boundary for the |
|--------------|-----------------------------------------------------------------------------------------|
|              | species to correct erroneous TMAG data points. This occurred after the model had been   |
|              | developed and may need to be incorporated into a future revision.                       |

#### Species: Golden Galaxias Galaxias aerates

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                     |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                 |
| Potential range           | The potential range of the golden galaxias is the catchment of the lakes and other waterbodies where the species occurs (except where a specialist advises that part of the catchment is not important to the species). The range boundary includes the catchments of populations translocated on private property. |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                 |
| Potential<br>habitat      | Potential habitat for the golden galaxias is all waterbodies including streams and riparian vegetation (including lakeside vegetation).                                                                                                                                                                             |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                 |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                 |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                 |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                 |
| REM habitat<br>model      | <ol> <li>Riparian zones within 500 m of known locations that are outside the Potential Range.</li> <li>Riparian zones associated with streams and waterbodies that are within the Potential<br/>Range.</li> </ol>                                                                                                   |
| Notes                     | The Potential Range excludes the locations of seven NVA records that are of relatively high positional accuracy (<=200 m) and currency (most 1996 or later).<br>Some NVA record locations are on freshwater features on which there is no native riparian vegetation.                                               |
| Data                      | LIST Hydarea and Hydline layers.                                                                                                                                                                                                                                                                                    |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                   |

#### Species: Great Lake Paragalaxias Paragalaxias eleotroides

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                     |
| Potential range           | The potential range of the Great Lake paragalaxias is the catchment of the lakes and other waterbodies where the species occurs (except where a specialist advises that part of the catchment is not important to the species).                                                                                                                                                                         |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                     |
| Potential habitat         | Potential habitat for the Great Lake paragalaxias is all waterbodies (including streams) and riparian vegetation (including lakeside vegetation) within the potential range of the species.                                                                                                                                                                                                             |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                     |
| CARSAG                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                     |
| habitat model             |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                     |
| information               |                                                                                                                                                                                                                                                                                                                                                                                                         |
| REM habitat<br>model      | <ol> <li>The Great Lake waterbody and fringing riparian zone (native vegetation and other).</li> <li>Riparian zones contiguous within one kilometre of the foreshore of Great Lake that are<br/>watercourse polygons (Hydarea data), Class 1 or Class 2 streams, or Class 3 or Class 4</li> </ol>                                                                                                       |
|                           | streams with a bed slope <2.5 degrees.                                                                                                                                                                                                                                                                                                                                                                  |
| Notes                     | All NVA record locations with <=500 m accuracy are located in Great Lake and around the foreshore, and not in streams forming the lake catchment.<br>The habitat beyond the lake is therefore considered to include only streams entering the lake that have a low stream class (1, 2) or low bed slope, both of which are used here as an analogue of areas in which stiller water is likely to occur. |
| Data                      | CFEV rivers layer (bed slope data).                                                                                                                                                                                                                                                                                                                                                                     |
|                           | LIST Hydarea layer.                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | FT Hydline layer attributed with FPA stream classes.                                                                                                                                                                                                                                                                                                                                                    |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                       |

#### Species: Saddled Galaxias Galaxias tanycephalus

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                             |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                         |
| Potential range           | The potential range of the saddled galaxias is the catchment of the lakes and other waterbodies where the species occurs (except where a specialist advises that part of the catchment is not important to the species).                                                                                                    |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                         |
| Potential habitat         | Potential habitat for the saddled galaxias is all waterbodies including streams and riparian vegetation (including lakeside vegetation).                                                                                                                                                                                    |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                         |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                         |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                         |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                         |
| REM habitat<br>model      | <ol> <li>Native riparian vegetation within one kilometre of known locations on streams.</li> <li>Native riparian vegetation around the foreshores of Woods Lake and Arthurs lake, and<br/>the native riparian vegetation of streams entering the lakes up to a distance of one<br/>kilometre from the lake edge.</li> </ol> |
| Notes                     | Only one NVA record of the species with a positional accuracy <=200 m (it then jumps to 1,000 m) is located more than one kilometre from a waterbody.<br>Rule 1 applies to only 2 NVA record locations.                                                                                                                     |
| Data                      | LIST Hydline and Hydarea data.                                                                                                                                                                                                                                                                                              |
| Model status              | Model is identical to Arthurs Paragalaxias.<br>Model script finds tags for Arthurs Paragalaxias and adds codes for this species, and<br>updates the species number and status fields.<br>Model tested and used in the REM.                                                                                                  |
| Known issues              | DPIPWE advised on 30 January 2014 that it needs to develop a new range boundary to correct erroneous TMAG data points. This occurred after the model had been developed and may need to be incorporated into a future revision.                                                                                             |

#### Species: Shannon Paragalaxias Paragalaxias dissimilis

| Species                   | Definition                                                                                                                                                                                                                   |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                              |
| FPA attributes            |                                                                                                                                                                                                                              |
| Core range                | N/A                                                                                                                                                                                                                          |
| Potential range           | The potential range of the Shannon paragalaxias is the catchment of the lakes and other waterbodies where the species occurs (except where a specialist advises that part of the catchment is not important to the species). |
| Known range               | N/A                                                                                                                                                                                                                          |
| Potential habitat         | Potential habitat for the Shannon paragalaxias is all waterbodies (including streams) and riparian vegetation (including lakeside vegetation) within the potential range of the species.                                     |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                          |
| Other habitat definitions | N/A                                                                                                                                                                                                                          |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                                                                          |
| Other                     | N/A                                                                                                                                                                                                                          |
| information               |                                                                                                                                                                                                                              |
| REM habitat               | 1. The Great Lake and Penstock Lagoon waterbodies and fringing riparian zone (native                                                                                                                                         |
| model                     | vegetation and other).<br>2. Riparian zones contiguous within one kilometre of the foreshore of Great Lake that are<br>Class 1 or Class 2 streams, or Class 3 or Class 4 streams with a bed slope <2.5 degrees.              |
| Notes                     | The Potential Range polygon excludes a recorded location in the Poatina Tail Race.                                                                                                                                           |
| Data                      | CFEV rivers layer (bed slope data).<br>DPIPWE stream classes and buffers.<br>FT Hydline layer attributed with FPA stream classes.                                                                                            |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                            |

#### Species: Swamp Galaxias Galaxias parvus

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes    |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Core range           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Potential range      | The potential range for the swamp galaxias is swampy areas and suitable streams<br>surrounding the Lake Pedder impoundment, a few streams draining to Lake Gordon near<br>McPartlan Pass (part of the Wedge catchment prior to flooding) and some small streams in<br>the Huon River catchment upstream of the Pedder impoundment. It does not include the<br>main body of the Lake Pedder impoundment or Lake Gordon. |
| Known range          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Potential<br>habitat | Potential habitat for the swamp galaxias is slow-flowing swampy streams with sandy or silty substrate, ranging in size from large deep streams to small runnels.                                                                                                                                                                                                                                                       |

23

| Definition                                                                                  |
|---------------------------------------------------------------------------------------------|
|                                                                                             |
| N/A                                                                                         |
|                                                                                             |
| 1. Native riparian vegetation on streams within 500 m of known locations.                   |
| 2. Native riparian vegetation on streams and wetlands on river sections with <3 degrees bed |
| slope within the Potential Range.                                                           |
| 3. Native riparian vegetation on Class 1 and Class 2 streams within the Potential Range.    |
| 90% of NVA records with an accuracy <=200 m are on streams with <3 degrees slope.           |
| Some streams on which records are located are not recognised in CFEV, so slope data will    |
| need to be substituted from other sources (e.g. FI stream class data).                      |
| CFEV rivers and wetlands layers.                                                            |
| UPP we stream classes and bullers layer.                                                    |
| ET Hydline laver attributed with EDA stream classes                                         |
| Model has not been developed as species notential range does not overlap the area of        |
| interest                                                                                    |
| DPIPWE advised on 30 January 2014 that it needs to develop a new range boundary             |
| involving major extensions to correct erroneous data. This occurred after the model had     |
| been developed and may need to be incorporated into a future revision.                      |
|                                                                                             |

#### Species: Swan Galaxias Galaxias fontanus

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Core range           | The core range of the Swan galaxias incorporates known sites and the catchments above known sites. This includes the Wildlife Priority Areas (Fauna Special Management Zones) on the upper Swan River, Tater Garden Creek and upper Blue Tier Creek, and other upper catchments of tributaries of the Macquarie, Blackman and Isis Rivers.                                                                                                                                                                                                                                                                                   |
| Potential range      | The potential range of the Swan galaxias is the broader catchments defined by specialists where the species may occur and where surveys have not been conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Known range          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Potential<br>habitat | Potential habitat for the Swan galaxias is slow to moderately fast flowing streams containing permanent water (even when not flowing), which have good in-stream cover from overhanging banks and/or logs, and shade from overhanging vegetation. A population can only be maintained where barriers have prevented establishment of trout and redfin perch. The nature of these barriers is variable and can include permanent natural structures such as waterfalls and chutes and also low flow dependent features such as marshes, ephemeral water-losing and remnant channels, and braided channel floodplain features. |

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Significant<br>habitat    | Significant habitat for the Swan galaxias is all potential habitat and a 30 m stream-side reserve within the core range. This includes the Wildlife Priority Areas (Fauna Special Management Zones) on the upper Swan River, Tater Garden Creek and upper Blue Tier Creek, and other upper catchments of tributaries of the Macquarie, Blackman and Isis Rivers.                                                                                                                                                                                                                 |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CARSAG<br>habitat model   | Riverine APUs in the natural populations in Blue Tier Creek, Tater Garden Creek (2<br>populations) and translocated populations in Coghlans Creek, Cygnet River, Dukes River,<br>Green Tier Creek, Lost Falls Creek, Rocka Rivulet, St Pauls River, Tullochgorum Creek and<br>Upper Blue Tier Creek.                                                                                                                                                                                                                                                                             |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| REM habitat<br>model      | <ol> <li>Native riparian vegetation within 500 m of recorded locations.</li> <li>Native riparian vegetation on Class 1, 2 and 3 streams in the catchments above known sites.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                          |
| Notes                     | Some known locations are not in the Core Range polygon.<br>90% of NVA records with accuracy <=100 m are on Class 2 streams.<br>The Core Range polygon does not match the description given. It includes substantial areas<br>downstream of the known locations, despite the extant habitat being dependent on barriers<br>to exotic fish establishment. Polygons in the NVA layer correspond to the CFEV<br>subcatchments in which the species has been recorded, not the description.<br>A separate layer for the species has been produced that matches the description given. |
| Data                      | FT Hydline layer attributed with FPA stream classes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Known issues              | DPIPWE advised on 30 January 2014 that it needs to develop a new range boundary for the species reflecting an "extremely minor change". This occurred after the model had been developed and may need to be incorporated into a future revision.                                                                                                                                                                                                                                                                                                                                 |

#### 2.3 Frogs and reptiles

| Species: | Glossy | Grass   | Skink |
|----------|--------|---------|-------|
| Pseud    | lemoia | rawlins | oni   |

| Species<br>attribute                          | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FPA altribules                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Core range                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential range                               | The potential range of the glossy grass skink is a 5 km (radius) buffer centred on known sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Known range                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential habitat                             | Potential habitat for the glossy grass skink is wetlands and swampy sites (including grassy wetlands, tea tree swamps and grassy sedgelands), and margins of such habitats.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Significant<br>habitat                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Other habitat definitions                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CARSAG                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| habitat model                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| information                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REM habitat                                   | 1. The Core Range (500 m buffer of known locations), excluding urban areas (Tasveg FUR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| model                                         | FUM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                               | 2. Parts of the land system polygons that are within one kilometre of the Core Range and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                               | nave any of the following characteristics:<br>(i) are LIST freshwater features classified as wetlands, wet areas or fleedelains; or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | (i) are land components that are gentle lower slopes or lower plains with the Tasyeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               | communities for wetlands ("A" codes), grasslands, (GSL, GCL) swamp forests (NLM, NMF).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                               | forests known to occur on wet areas (DOV, DOW, DVS) or wet scrubs (SRI, SSC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Notes                                         | The Core Range data on the NVA is a 500 m buffer, not 5km.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                               | Some recorded locations are on the edge of urban areas, with the Core Range buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                               | extending into them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               | 78% of NVA records with accuracy <=500 m are on land components that are gentle lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                               | slopes or lower plains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Data                                          | NRP Land systems components data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               | LIST Myudred Idyer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | Additional data generated by a script embedded in the REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Model status                                  | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Known issues                                  | DPIPWE advised on 30 January 2014 that the revised boundary developed by the FPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | developed and may need to be incorporated into a future revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Notes<br>Data<br>Model status<br>Known issues | <ul> <li>(ii) are land components that are gentle lower slopes or lower plains with the Tasveg communities for wetlands ("A" codes), grasslands, (GSL, GCL) swamp forests (NLM, NME), forests known to occur on wet areas (DOV, DOW, DVS) or wet scrubs (SRI, SSC).</li> <li>The Core Range data on the NVA is a 500 m buffer, not 5km.</li> <li>Some recorded locations are on the edge of urban areas, with the Core Range buffer extending into them.</li> <li>78% of NVA records with accuracy &lt;=500 m are on land components that are gentle lower slopes or lower plains.</li> <li>NRP Land systems components data.</li> <li>LIST Hydarea layer.</li> <li>Vegetation from NRP Atomic Planning Units.</li> <li>Additional data generated by a script embedded in the REM.</li> <li>DPIPWE advised on 30 January 2014 that the revised boundary developed by the FPA needs to be included in the repository on the NVA. This occurred after the model had been developed and may need to be incorporated into a future revision.</li> </ul> |

#### Species: Green and Gold Frog Litoria raniformis

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FPA                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| attributes                |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Core range                | The core range of the green and gold frog is an arbitrary 5 km (radius) buffer centred on the known sites (this range is also referred to as "important areas", which can include point locations for low precision records and polygons for known habitat patches such as named lagoons).                                                                                                                                  |
| Potential range           | The potential range of the green and gold frog is based on models of the current and historic distribution of the species.                                                                                                                                                                                                                                                                                                  |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Potential<br>habitat      | Potential habitat for the green and gold frog is permanent and temporary waterbodies,<br>usually with vegetation in or around them. Potential habitat includes features such as<br>natural lagoons, permanently or seasonally inundated swamps and wetlands, farm dams,<br>irrigation channels, artificial water-holding sites such as old quarries, slow-flowing stretches<br>of streams and rivers and drainage features. |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CARSAG                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |
| habitat model             |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |
| information               |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| REM habitat               | 1. 100 m around known locations.                                                                                                                                                                                                                                                                                                                                                                                            |
| model                     | 2. Riparian zones around freshwater features within the Potential Range, excluding class 4                                                                                                                                                                                                                                                                                                                                  |
|                           | <ul> <li>Streams.</li> <li>(3. For recorded locations outside the Potential Range, riparian zones of freshwater within one kilometre of the recorded location that are not class 4 streams.) Deleted from current REM - there are no records of sufficient accuracy outside the Core Range.</li> </ul>                                                                                                                      |
| Notes                     | The land system polygon is used as an indicator of likely change in the physical                                                                                                                                                                                                                                                                                                                                            |
|                           | characteristics of the potential habitat.                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | large to be useful.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Data                      | To be generated through a script to be incorporated in the REM.                                                                                                                                                                                                                                                                                                                                                             |
|                           | Updated land systems polygons data (NRP).                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | LIST Hydarea layer.                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | Stream class data for river sections (FT version of LIST Hydline).                                                                                                                                                                                                                                                                                                                                                          |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                           |

#### Species: Striped Marsh Frog Limnodynastes peroni

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Core range                | The core range of the striped marsh frog is an arbitrary 5 km (radius) buffer centred on the known sites (this range is also referred to as "important areas", which can include point locations for low precision records and polygons for known habitat patches such as named lagoons).                                                                                                                           |
| Potential range           | The potential range of the striped marsh frog is based on models of the current and historic distribution of the species (mainly coastal and near-coastal parts of the northeast, north, northwest, west and southwest).                                                                                                                                                                                            |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential<br>habitat      | The core range of the striped marsh frog is an arbitrary 5 km (radius) buffer centred on the known sites (this range is also referred to as "important areas", which can include point locations for low precision records and polygons for known habitat patches such as named lagoons).                                                                                                                           |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                 |
| REM habitat<br>model      | <ol> <li>100 m around known locations.</li> <li>Riparian zones around freshwater features within the Potential Range, excluding class 4 streams.</li> <li>(3. For recorded locations outside the Potential Range, riparian zones of freshwater within one kilometre of the recorded location that are not class 4 streams.) Deleted. There are no records of sufficient accuracy outside the Core Range.</li> </ol> |
| Notes                     | The land system polygon is used as an indicator of likely change in the physical<br>characteristics of the potential habitat.                                                                                                                                                                                                                                                                                       |
| Data                      | To be generated through a script to be incorporated in the REM.<br>Updated land systems polygons data (NRP).<br>LIST Hydarea layer.<br>Stream class data for river sections (FT version of LIST Hydline).                                                                                                                                                                                                           |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                   |

#### Species: Tussock Skink Pseudemoia pagenstecheri

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Core range                | The core range of the tussock skink is a 500 m (radius) buffer centred on the known sites.                                                                                                                                                                                                                                                                                                                                                                    |
| Potential range           | The potential range of the tussock skink includes the core range and specialist-defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed (includes the majority of mapped native lowland and highland grasslands throughout the Midlands, Fingal Valley and northwest grasslands).                                                                                                |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential<br>habitat      | The potential range of the tussock skink includes the core range and specialist-defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed (includes the majority of mapped native lowland and highland grasslands throughout the Midlands, Fingal Valley and northwest grasslands).                                                                                                |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REM habitat<br>model      | <ol> <li>The Core Range, where the location of NVA records in the polygon have a spatial accuracy &lt;=500 m, and the vegetation type is not water.</li> <li>Native grasslands (Tasveg "G"), dry forest and woodlands (Tasveg "D") and non-eucalypt forest and woodland (Tasveg "N") on land systems polygons that intersect the core range and are land components that are lower plains or gentle lower slopes and within 5km of the Core Range.</li> </ol> |
| Notes                     | Some of the buffered polygons in the Core Range data are based on records of low<br>positional accuracy (e.g. NVA species obs. 560447, accuracy 2,000 m).<br>All but one of the NVA species records is 1983 or later.<br>Known locations of the species are concentrated on flatter areas associated with proximity<br>to streams.<br>76% of records with accuracy <=500 m are on land components that are gentle lower slopes<br>or lower plains.            |
| Data                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### 2.4 Invertebrates

#### Species: Ammonite Snail (land snail) Discocharopa vigens

| Species                   | Definition                                                                                                                                                                                                             |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                        |
| FPA attributes            |                                                                                                                                                                                                                        |
| Core range                | The core range of the ammonite snail is a specialist-defined buffer zone based on habitat features and centered on known sites.                                                                                        |
| Potential range           | The potential range of the ammonite snail includes the core range and specialist-defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed. |
| Known range               | N/A                                                                                                                                                                                                                    |
| Potential habitat         | Potential habitat for the ammonite snail is dry and wet eucalypt forests on dolerite in the Hobart lowlands (all below 400 m a.s.l).                                                                                   |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                    |
| Other habitat definitions | N/A                                                                                                                                                                                                                    |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                                                                    |
| Other<br>information      | N/A                                                                                                                                                                                                                    |
| REM habitat               | 1. 100 m around known locations.                                                                                                                                                                                       |
| model                     | 2. Dry forest ("D" codes) and wet forest ("W" codes) within the Core Range.                                                                                                                                            |
| Notes                     | The Potential Range is extremely large relative to the number of known locations.                                                                                                                                      |
| Data                      |                                                                                                                                                                                                                        |
| Model status              | Model not developed.<br>Species does not occur in FT area of interest.                                                                                                                                                 |

#### Species: Beddomeia kershawi, B. krybetes & B. launcestonensis (Hydrobiid group 1)

| Species<br>attribute   | Definition                                                                                                                                                                                                       |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes         |                                                                                                                                                                                                                  |
| Core range             | N/A                                                                                                                                                                                                              |
| Potential range        | The potential range of threatened freshwater snails includes the known range and specialist-defined extensions of the known range based on habitat features (catchment based) but are as yet largely unsurveyed. |
| Known range            | The known range of threatened freshwater snails is based on known sites, surveys (presence/absence) and specialist opinion.                                                                                      |
| Potential habitat      | Potential habitat for these species ( <i>B. kershawi, B. krybetes, B. launcestonensis</i> ) is riverine habitats within the potential range.                                                                     |
| Significant<br>habitat | N/A                                                                                                                                                                                                              |

| Species<br>attribute         | Definition                                                                                                                             |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Other habitat<br>definitions | N/A                                                                                                                                    |
| CARSAG habitat<br>model      | Various models, mostly based on riparian vegetation within specified distance of known locations.                                      |
| Other<br>information         | N/A                                                                                                                                    |
| REM habitat<br>model         | <ol> <li>Areas within 100 m of known locations.</li> <li>Riparian zones on Class 1 and 2streams within the Potential Range.</li> </ol> |
| Notes                        | Recorded locations of these species are on main river channels.                                                                        |
| Data                         | FT version of LIST Hydline layer, attributed with stream classes.                                                                      |
| Model status                 | Model tested and used in the REM.<br>Habitat in model is largely outside FT area of interest.                                          |

#### Species: B. averni, B. briansmithi, B. camensis, B. capensis, B. fromensis, B. fultoni, B. hallae, B. hermansi, B. lodderae, B. petterdi, B. phasianella, B. ronaldi, B. tumida, B. waterhouseae, B. wiseae (Hydrobiid group 2)

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                               |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                           |
| Potential range           | The potential range of threatened freshwater snails includes the known range and specialist-defined extensions of the known range based on habitat features (catchment based) but are as yet largely unsurveyed.                                                                                                                                                              |
| Known range               | The known range of threatened freshwater snails is based on known sites, surveys (presence/absence) and specialist opinion.                                                                                                                                                                                                                                                   |
| Potential habitat         | The known range of threatened freshwater snails is based on known sites, surveys (presence/absence) and specialist opinion.                                                                                                                                                                                                                                                   |
| Significant<br>habitat    | <i>B. briansmithi, B. capensis, B. fromensis, B. lodderae, B. ronaldi, B. turnerae, B. waterhouseae, B. wiseae</i> all included in FPA Planning Guideline 2008/1. Significant habitat for these species is all native vegetation within the known range.                                                                                                                      |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                           |
| CARSAG<br>habitat model   | Various models, mostly based on riparian vegetation within specified distance of known locations.                                                                                                                                                                                                                                                                             |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                           |
| REM habitat<br>model      | <ol> <li>Areas within 100 m of known locations.</li> <li>Riparian zones within the Known Range of species listed above under Significant<br/>Habitat, plus <i>B. camensis</i>, and <i>B. fultoni</i>.</li> <li>Riparian zones within the Potential Range of <i>B. averni</i>, <i>B. hallae</i>, <i>B. hermansi</i>, <i>B. petterdi</i>, and <i>B. phasianella</i>.</li> </ol> |
| Notes                     | Potential Range used where the known range is small and does not contain substantial areas where the physical environment or vegetation of riparian zones is substantially different from the Known Range.                                                                                                                                                                    |

| Species<br>attribute | Definition                                                                                                                                                                            |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data                 | LIST Hydline and Hydarea layers.<br>Native vegetation from NRP Atomic Planning Units (mostly Tasveg with some updates).<br>Riparian zones are generated in the REM scripting process. |
| Model status         | Model tested and used in the REM.                                                                                                                                                     |

#### Species: B. angulata, B. zeehanensis, Phrantela annamurrayae, P. conica, P. marginata (Hydrobiid group 3)

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| attributes                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential range           | The potential range of threatened freshwater snails includes the known range and specialist-<br>defined extensions of the known range based on habitat features (catchment based) but are<br>as yet largely unsurveyed.                                                                                                                                                                                                                                       |
| Known range               | The known range of threatened freshwater snails is based on known sites, surveys (presence/absence) and specialist opinion.                                                                                                                                                                                                                                                                                                                                   |
| Potential<br>habitat      | Potential habitat for these species ( <i>B. angulata, B. zeehanensis, P. annamurrayae, P. conica,</i><br><i>P. marginata</i> ) is all watercourses within the potential range. These species either have<br>restricted distributions that are currently poorly defined (e.g. some of the west coast<br>species) or restricted distributions that may be better defined but a higher level of<br>management is anticipated due to the restricted distribution. |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CARSAG<br>habitat model   | Various models, mostly based on riparian vegetation within specified distance of known locations.                                                                                                                                                                                                                                                                                                                                                             |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REM habitat<br>model      | <ol> <li>Areas within 100 m of known locations.</li> <li>Riparian zones within the Known Range.</li> </ol>                                                                                                                                                                                                                                                                                                                                                    |
| Notes                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data                      | LIST Hydline and Hydarea layers.<br>Riparian zones are generated in the REM scripting process.                                                                                                                                                                                                                                                                                                                                                                |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Known issues              | DPIPWE advised on 30 January 2014 that it needs to develop a new range boundary for <i>P. marginata</i> to reflect new records. This occurred after the model had been developed and may need to be incorporated into a future revision.                                                                                                                                                                                                                      |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

#### Species: B. bowryensis, B. gibba, B. salmonis (Hydrobiid group 4)

| Species                   | Definition                                                                                                                                                                                                                                                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                           |
| FPA attributes            |                                                                                                                                                                                                                                                                           |
| Core range                | N/A                                                                                                                                                                                                                                                                       |
| Potential range           | The potential range of threatened freshwater snails includes the known range and specialist-defined extensions of the known range based on habitat features (catchment based) but are as yet largely unsurveyed.                                                          |
| Known range               | The known range of threatened freshwater snails is based on known sites, surveys (presence/absence) and specialist opinion.                                                                                                                                               |
| Potential<br>habitat      | Potential habitat for these species ( <i>B. bowryensis, B. gibba, B. salmonis</i> ) is all watercourses within the potential range. These species are poorly understood. Multiple surveys have failed to extend the range beyond a low number of sites.                   |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                       |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                       |
| CARSAG<br>habitat model   | Various models, mostly based on riparian vegetation within specified distance of known locations.                                                                                                                                                                         |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                       |
| REM habitat<br>model      | <ol> <li>Areas within 100 m of known locations.</li> <li>Riparian zones within the Known Range of <i>B. bowryensis</i> and <i>B. salmonensis</i></li> <li>Riparian zones within the Potential Range of <i>B. gibba.</i></li> </ol>                                        |
| Notes                     | NVA range polygons include two layers for Bowry Creek hydrobiids. Layer for <i>B. bowryensis</i> is suffixed with species code 70_20443.                                                                                                                                  |
| Data                      | LIST Hydline and Hydarea layers.<br>Riparian zones are generated in the REM scripting process.                                                                                                                                                                            |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                         |
| Known issues              | DPIPWE advised on 30 January 2014 that it needs to update the range boundaries for <i>B. bowryensis, B. gibba</i> and <i>B. salmonis</i> to reflect new records. This occurred after the model had been developed and may need to be incorporated into a future revision. |

# Species: B. bellii, B. forthensis, B. franklandensis, B. hulli, B. inflata, B. protruberata, B. topsiae, B. trochiformis (Hydrobiid group 5)

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                             |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                         |
| Potential range           | The potential range of threatened freshwater snails includes the known range and specialist-defined extensions of the known range based on habitat features (catchment based) but are as yet largely unsurveyed.                                                                                                                            |
| Known range               | The known range of threatened freshwater snails is based on known sites, surveys (presence/absence) and specialist opinion.                                                                                                                                                                                                                 |
| Potential<br>habitat      | Potential habitat for these species ( <i>B. bellii, B. forthensis, B. franklandensis, B. hulli, B. inflata, B. protruberata, B. topsiae, B. trochiformis</i> ) is all watercourses within the potential range.                                                                                                                              |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                         |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                         |
| CARSAG<br>habitat model   | Various models, mostly based on riparian vegetation within specified distance of known locations.                                                                                                                                                                                                                                           |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                         |
| REM habitat<br>model      | <ol> <li>Areas within 100 m of known locations.</li> <li>Riparian zones within the Known Range of <i>B. forthensis</i>, <i>B. franklandensis</i>, <i>B. hullii</i>, <i>B. protuberata</i>, <i>B. topsiae</i>.</li> <li>Riparian zones within the Potential Range of <i>B. bellii</i>, <i>B. inflata</i>, <i>B. trochiformis</i>.</li> </ol> |
| Notes                     |                                                                                                                                                                                                                                                                                                                                             |
| Data                      | LIST Hydline and Hydarea layers.<br>Riparian zones are generated in the REM scripting process.                                                                                                                                                                                                                                              |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                           |
| Known issues              | DPIPWE advised on 30 January 2014 that it needs to update the range boundaries for <i>B. hullii</i> to reflect new records at Savage River and new records for <i>B. topsiae</i> . This occurred after the model had been developed and may need to be incorporated into a future revision.                                                 |

#### Species: B. fallax, B. mesibovi, B. minima, B. tasmanica, B. turnerae, B. wilmotensis, P. pupiformis (Hydrobiid group 6)

| Species<br>attribute      | Definition                                                                                                                                                                                                       |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                  |
| Core range                | N/A                                                                                                                                                                                                              |
| Potential range           | The potential range of threatened freshwater snails includes the known range and specialist-defined extensions of the known range based on habitat features (catchment based) but are as yet largely unsurveyed. |
| Known range               | The known range of threatened freshwater snails is based on known sites, surveys (presence/absence) and specialist opinion.                                                                                      |
| Potential habitat         | Potential habitat for these species ( <i>B. fallax, B. mesibovi, B. minima, B. tasmanica, *B. turnerae, B. wilmotensis, P. pupiformis</i> ) is generally restricted to smaller streams across larger catchments. |
| Significant<br>habitat    | <i>B. turnerae</i> is included in FPA Planning Guideline 2008/1. Significant habitat for these species is all native vegetation within the known range.                                                          |
| Other habitat definitions | N/A                                                                                                                                                                                                              |
| CARSAG habitat<br>model   | Various models, mostly based on riparian vegetation within specified distance of known locations.                                                                                                                |
| Other                     | N/A                                                                                                                                                                                                              |
| information               |                                                                                                                                                                                                                  |
| REM habitat               | 1. Areas within 100 m of known locations.                                                                                                                                                                        |
| model                     | 2. Riparian zones within the Known Range of <i>B. fallax, B. mesibovi, B. minima, B.</i>                                                                                                                         |
|                           | 3. Riparian zones within the Potential Range of <i>B. wilmotensis</i> .                                                                                                                                          |
| Notes                     |                                                                                                                                                                                                                  |
| Data                      | LIST Hydline and Hydarea layers.<br>Native vegetation from NRP Atomic Planning Units (mostly Tasveg with some updates).<br>Riparian zones are generated in the REM scripting process.                            |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                |

## Species: Blind Velvet Worm *Tasmanipatus anophthalmus*

| Species<br>attribute | Definition                                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA                  |                                                                                                                                                                                   |
| attributes           |                                                                                                                                                                                   |
| Core range           | The core range of the blind velvet worm is a minimum convex polygon around known sites.                                                                                           |
| Potential range      | The potential range of the blind velvet worm is a buffer of 2 km around most of the core range but greater around the southern part of the range (where survey has been limited). |
| Known range          | N/A                                                                                                                                                                               |
| Potential<br>habitat | Potential habitat for the blind velvet worm is eucalypt forest with rotting logs.                                                                                                 |

35

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Significant<br>habitat    | Significant habitat for the blind velvet worm is all forest within the core range that has not<br>been subject to any high-intensity or frequent fires within at least the last 20 years,<br>containing numerous rotting eucalypt logs including large (greater than 40 cm in mid-log<br>diameter) decaying eucalypt logs with a soft rot centre, that remain moist in areas protected<br>from disturbance such as fire.                                                  |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CARSAG<br>habitat model   | Core habitat: APUs of eucalypt forest within the core distribution mapped by Mesibov (1997)<br>in good biophysical condition (Use_bn >= 3). Also same forest characteristics in vicinity of<br>known locations.<br>General habitat: APUs of eucalypt forest within the marginal distribution mapped by<br>Mesibov (1997) in very good biophysical condition (Use_bn >=4). Condition a surrogate for<br>use of rotting logs as habitat.                                    |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| REM habitat<br>model      | <ol> <li>Areas within 100 m of known locations or eucalypt forest within 200 m of known locations.</li> <li>Areas within the Potential Range that are land systems components that are steep lower slopes, steep mid-slopes and gentle lower and:         <ul> <li>are eucalypt forests with PI-type coding that is predominantly mature; or</li> <li>are old growth; or</li> <li>are eucalypt forest with biophysical naturalness classes 4 or 5.</li> </ul> </li> </ol> |
| Notes                     | 86% of NVA record locations are on land system components that are steep mid-slopes, steep lower slopes (incised streams in this area) or gentle lower slopes.                                                                                                                                                                                                                                                                                                            |
| Data                      | PI-type coding within species range.<br>Land systems components data layer (NRP layer).                                                                                                                                                                                                                                                                                                                                                                                   |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Species: Bornemisszas Stag Beetle Hoplogonus bornemisszai

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                  |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                              |
| Potential range           | N/A                                                                                                                                                                                                                                                                                                                                                                              |
| Known range               | The known range of the Bornemisszas stag beetle is a minimum convex polygon around known sites.                                                                                                                                                                                                                                                                                  |
| Potential<br>habitat      | Potential habitat for the Bornemisszas stag beetle is wet eucalypt forest (including those regenerating after clearfell, burn and sow silviculture), mixed forest, damp or wet forest gullies in dry forest. Habitat quality may improve with increasing moisture content, leaf litter depth, proportion of coarse woody debris, etc. (v1.5 update of FPA document – see Notes). |
| Significant<br>habitat    | Significant habitat for the Bornemisszas stag beetle is all potential habitat within the known range                                                                                                                                                                                                                                                                             |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                              |

| Species            | Definition                                                                                                             |
|--------------------|------------------------------------------------------------------------------------------------------------------------|
| attribute          |                                                                                                                        |
| CARSAG             | APUs of wet forest in good biophysical condition (Use_BN >=3) plus other APUs in vicinity of                           |
| habitat model      | recorded locations.                                                                                                    |
| Other              | N/A                                                                                                                    |
| information        |                                                                                                                        |
| <b>REM habitat</b> | 1. Areas within 200 m of known locations.                                                                              |
| model              | 2. Tasveg wet eucalypt forest ("W" codes) or riparian zone of dry eucalypt forests ("D" codes) within the Known Range. |
| Notes              | v1.5 update of FPA document added section on habitat quality to potential habitat.                                     |
| Data               | Vegetation from NRP Atomic Planning Units.                                                                             |
|                    | Riparian zones generated from LIST Hydline and Hydarea as part of the REM process.                                     |
| Model status       | Model tested and used in the REM.                                                                                      |

#### Species: Broad-toothed Stag Beetle Lissotes latidens

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                            |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                        |
| Potential range           | The potential range of the broad-toothed stag beetle includes the known range and specialist-defined extensions to the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed (primarily extending to the coastal region, east of the known range on mainland Tasmania and the whole of Maria Island). |
| Known range               | The known range of the broad-toothed stag beetle is a minimum convex polygon around known sites.                                                                                                                                                                                                                                                           |
| Potential<br>habitat      | Potential habitat for the broad-toothed stag beetle ranges from patches of wet forest within dry eucalypt forest (especially drainage lines and wet gullies) to wet eucalypt forest and rainforest, noting that areas where logs occupy more than 10% of the forest floor are preferred.                                                                   |
| Significant<br>habitat    | Significant habitat for the broad toothed stag beetle is all potential habitat within the known range.                                                                                                                                                                                                                                                     |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                        |
| CARSAG<br>habitat model   | APUs of wet forest, damp sclerophyll and rainforest in good biophysical condition that intersect the 2 known ranges of the species as reported by Meggs (1999 <sup>14</sup> ), plus all such APUs within 100 m of known locations of the species. Also riverine APUs of other forest types in good biophysical conditions within known range.              |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                        |
| REM habitat<br>model      | <ol> <li>Areas within 200 m of known locations.</li> <li>Wet eucalypt forest ("W" codes), rainforest ("R" codes), dry eucalypt forest ("D" codes) in riparian zones, and SBR within the Potential Range that are within biophysical naturalness classes 3, 4 or 5.</li> </ol>                                                                              |

<sup>&</sup>lt;sup>14</sup> Meggs, J.M. (1999). Distribution, habitat characteristics & conservation requirements of the Broad-toothed Stag Beetle *Lissotes latidens* (Coleoptera: Lucanidae). A report to the Forest Practices Board & Forestry Tasmania, May 1999.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.
| Species<br>attribute | Definition                                                                                                                                                                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes                | Biophysical naturalness classes less than 3 are less likely to have logs on the forest floor due to the intensity of harvesting.                                                                               |
| Data                 | BN data is embedded in NRP Atomic Planning Units data, including update for FT land using PI-type disturbance data.<br>Riparian zones generated from LIST Hydline and Hydarea data as part of the REM process. |
| Model status         | Model tested and used in the REM.                                                                                                                                                                              |

# Species: Burgundy Snail Helicarion rubicundus

| Species<br>attribute      | Definition                                                                                                                                                                                                                     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                |
| Core range                | The core range of the burgundy snail is a minimum convex polygon around known sites.                                                                                                                                           |
| Potential range           | The potential range of the burgundy snail includes the core range and specialist-defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed.         |
| Known range               | N/A                                                                                                                                                                                                                            |
| Potential habitat         | Potential habitat for the burgundy snail is all wet forest, including regrowth, regardless of age, topography or management history.                                                                                           |
| Significant<br>habitat    | Significant habitat for the burgundy snail is all potential habitat within the core range.                                                                                                                                     |
| Other habitat definitions | N/A                                                                                                                                                                                                                            |
| CARSAG habitat<br>model   | Wet eucalypt and rainforest APUs in good biophysical condition within two defined ranges<br>– one of the Forestier Peninsula and the other on the Tasman Peninsula, plus riparian<br>APUs of other forest types in same range. |
| Other<br>information      | N/A                                                                                                                                                                                                                            |
| REM habitat               | <ol> <li>Native vegetation within 200 m of known locations.</li> <li>Wet eucalypt forest within the potential range.</li> </ol>                                                                                                |
| Notes                     | 15 of 77 NVA record locations for the species are mapped in dry eucalypt forests.                                                                                                                                              |
| Data                      | Vegetation data from NRP Atomic Planning Units (Tasveg plus some updated data).                                                                                                                                                |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                              |

## Species: Burnie Burrowing Crayfish Engaeus yabbimunna

| Species                      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FPA                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| attributes                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Core range                   | The core range of the Burnie burrowing crayfish is a minimum convex polygon around known sites.                                                                                                                                                                                                                                                                                                                                                                    |
| Potential range              | The potential range of the Burnie burrowing crayfish includes the core range and specialist-<br>defined extensions of the core range that may support the species but are as yet largely<br>unsurveyed.                                                                                                                                                                                                                                                            |
| Known range                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potential<br>habitat         | Potential habitat for the Burnie burrowing crayfish includes any poorly drained habitats such<br>as streams (of any class and disturbance history), seepages (e.g. springs in forest or pasture,<br>outflows of farm dams), low-lying flat swampy areas and vegetation (e.g. buttongrass and<br>heathy plains, marshy areas, boggy areas of pasture), drainage depressions, ditches (artificial<br>and natural, including roadside ditches, pasture drains, etc.). |
| Significant<br>habitat       | Significant habitat for the Burnie burrowing crayfish is all native vegetation in the immediate catchments of sites where the species is known to occur.                                                                                                                                                                                                                                                                                                           |
| Other habitat<br>definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CARSAG                       | Riparian native vegetation within known range. Native vegetation within 100 m of known                                                                                                                                                                                                                                                                                                                                                                             |
| habitat model                | sites, plus some small areas of cultural vegetation types within same distance (see Doran and Richards 1996).                                                                                                                                                                                                                                                                                                                                                      |
| Other                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| information                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| REM habitat                  | 1. 100 m around known locations.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| model                        | 2. Native riparian vegetation within the Potential Range.                                                                                                                                                                                                                                                                                                                                                                                                          |
| Notes                        | The Core Range does not include all recorded locations of the species.<br>There are no strong associations with landforms for this species.<br>The Potential Range is significantly larger than the Core Range – possibly by a factor of two.<br>All recorded locations are on land systems characterised as <300 m altitude.                                                                                                                                      |
| Data                         | Land systems components layer (NRP data).<br>Vegetation data from NRP Atomic Planning Units (Tasveg plus some updated data).                                                                                                                                                                                                                                                                                                                                       |
| Model status                 | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## **Species: Caddisflies**

#### (Stenopsychodes lineata, Ramiheithrus kocinus, Orthotrichia adornata, Tasimia drepana, Leptocerus souta, Oxyethira mienica, Oecetis gilva, Hydrobiosella sagitta, Hydroptila scamandra, Orphninotrichia maculata)

| Species attribute            | Definition                                                                                                                                           |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes               |                                                                                                                                                      |
| Core range                   | N/A                                                                                                                                                  |
| Potential range              | The potential range of threatened caddisflies is the known location with a buffer of 2 km upstream and downstream of the known site.                 |
| Known range                  | N/A                                                                                                                                                  |
| Potential habitat            | Potential habitat for threatened caddisflies is all waterbodies including streams and riparian vegetation.                                           |
| Significant habitat          | N/A                                                                                                                                                  |
| Other habitat<br>definitions | N/A                                                                                                                                                  |
| CARSAG habitat<br>model      | Caddis Fly (Macquarie River). Riparian APUs along Macquarie River within 1km of recorded location.                                                   |
| Other<br>information         | N/A                                                                                                                                                  |
| REM habitat                  | 1. Areas within 100 m of recorded locations.                                                                                                         |
| model                        | 2. Riparian zones within the Potential Range of each species.                                                                                        |
| Notes                        |                                                                                                                                                      |
| Data                         | LIST Hydline and Hydarea data.<br>Riparian zones are generated through the REM process.                                                              |
| Model status                 | Model not developed. Most species are poorly known and considered to be sessile or near-sessile. Model based on NVA point locations used as default. |

#### Species: Cataract Gorge Snail Pasmaditta jungermanniae

| Species<br>attribute   | Definition                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes         |                                                                                                                                                                                                                                                                                                                                                                                |
| Core range             | The core range of the Cataract Gorge snail is a 750 m (radius) buffer centred on the known sites at Notley Gorge, and a 500 m (radius) buffer centred on the known sites in other areas.                                                                                                                                                                                       |
| Potential range        | The potential range of the Cataract Gorge snail includes the Core Range and specialist-<br>defined extensions of the core range that may support the species based on habitat<br>characteristics but are as yet largely unsurveyed.                                                                                                                                            |
| Known range            | N/A                                                                                                                                                                                                                                                                                                                                                                            |
| Potential<br>habitat   | Potential habitat for the Cataract Gorge snail is intact or disturbed native vegetation with extensive exposed rock faces, usually greater than 2 m high (e.g. distinct outcrops/cliffs or several large boulders), with well-developed moss and/or lichen cover on rock faces and ledges (such sites often occur in more deeply incised drainage features or steeper slopes). |
| Significant<br>habitat | N/A                                                                                                                                                                                                                                                                                                                                                                            |

| Species<br>attribute         | Definition                                                                      |
|------------------------------|---------------------------------------------------------------------------------|
| Other habitat<br>definitions | N/A                                                                             |
| CARSAG                       | N/A                                                                             |
| habitat model                |                                                                                 |
| Other                        | N/A                                                                             |
| information                  |                                                                                 |
| REM habitat                  | 1. 100 m around known locations.                                                |
| model                        | 2. Native vegetation and Tasveg ORO within the Core Range.                      |
| Notes                        | The Potential Range is extremely large relative to the Core Range.              |
| Data                         | Vegetation data from NRP Atomic Planning Units (Tasveg plus some updated data). |
| Model status                 | Model tested and used in the REM.                                               |

## **Species: Cave Fauna**

(Goedetrechus mendumae, Olgania excavata, Geodetrechus parallelus, Parvotettix rangaensis, Hickmanoxyomma gibbergunyar, Idacarabus cordicollis, Tasmanotrechus cockerilli, Pseudotyrannochthonius typhlus, Idacarabus troglodytes, Parvotettix whinrayi)

| Species                      | Definition                                                                                                                                                                                                                                                                                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes               |                                                                                                                                                                                                                                                                                                  |
| C                            |                                                                                                                                                                                                                                                                                                  |
| Core range                   | N/A                                                                                                                                                                                                                                                                                              |
| Potential range              | The potential range of cave fauna is the cave and catchment of the cave supporting the known sites for the particular species.                                                                                                                                                                   |
| Known range                  | N/A                                                                                                                                                                                                                                                                                              |
| Potential habitat            | Potential habitat for cave fauna is the cave environment, including features associated with cave entrances and exits such as boulders and cliffs, known sites for the particular species sinkholes, and pools and streams within 40 m of cave entrance.                                         |
| Significant<br>habitat       | N/A                                                                                                                                                                                                                                                                                              |
| Other habitat<br>definitions | N/A                                                                                                                                                                                                                                                                                              |
| CARSAG<br>habitat model      | N/A                                                                                                                                                                                                                                                                                              |
| Other<br>information         | N/A                                                                                                                                                                                                                                                                                              |
| REM habitat<br>model         | <ol> <li>Areas within 100 m of known locations.</li> <li>The Known Range of each species.</li> </ol>                                                                                                                                                                                             |
| Notes                        | NVA now includes polygons for the Known Range of these species.<br>The Known Range is used as the habitat as many habitat features are fine in scale and not<br>amenable to being expressed spatially.<br>Rule 1 is included to account for any records that might fall outside the Known Range. |
| Data                         |                                                                                                                                                                                                                                                                                                  |
| Model status                 | Model not developed. Species in this group are sessile or near-sessile and have small known ranges. Model based on NVA point locations used as default.                                                                                                                                          |

## Species: Central North Burrowing Crayfish Engaeus granulatus

| Species            | Definition                                                                                                                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute          |                                                                                                                                                                                     |
| FPA                |                                                                                                                                                                                     |
| attributes         |                                                                                                                                                                                     |
| Core range         | The core range of the central north burrowing crayfish is a minimum convex polygon around known sites.                                                                              |
| Potential range    | The potential range of the central north burrowing crayfish includes the core range and specialist-defined extensions of the core range that may support the species but are as yet |
|                    | largely unsurveyed.                                                                                                                                                                 |
| Known range        | N/A                                                                                                                                                                                 |
| Potential          | Potential habitat for the central north burrowing crayfish includes any poorly drained                                                                                              |
| habitat            | habitats such as streams (of any class and disturbance history), seepages (e.g. springs in                                                                                          |
|                    | forest or pasture, outflows of farm dams), low-lying flat swampy areas and vegetation (e.g.                                                                                         |
|                    | buttongrass and heathy plains, marshy areas, boggy areas of pasture), drainage depressions,                                                                                         |
| Cignificant        | Gitches (artificial and natural, including roadside ditches, pasture drains, etc.).                                                                                                 |
| habitat            | immediate catchments where the species is known to occur.                                                                                                                           |
| Other habitat      | N/A                                                                                                                                                                                 |
| definitions        | · ·                                                                                                                                                                                 |
| CARSAG             | N/A                                                                                                                                                                                 |
| habitat model      |                                                                                                                                                                                     |
| Other              | N/A                                                                                                                                                                                 |
| information        |                                                                                                                                                                                     |
| <b>REM habitat</b> | 1. Riparian zones within 500 m of known locations.                                                                                                                                  |
| model              | 2. Riparian zones within the Potential Ranges on land system components that are lower                                                                                              |
|                    | plains, gentle lower slopes or steep lower slopes and within five kilometres of NVA record locations.                                                                               |
| Notes              | The Known Range polygon does not include all NVA record locations.                                                                                                                  |
|                    | The Potential Range polygon includes a substantial area (western side of Tamar River) in                                                                                            |
|                    | which no records of the species have been found.                                                                                                                                    |
|                    | It also appears to have been derived inconsistently, containing both boundaries which                                                                                               |
|                    | correspond to catchments and also long straight lines most likely drawn from a minimum                                                                                              |
|                    | There are no clear associations between stream Class or bed slope of streams                                                                                                        |
|                    | There is no association between record locations and vegetation type $-50\%$ of all records                                                                                         |
|                    | are on cleared land.                                                                                                                                                                |
|                    | There is a strong association with landform types that are lower in the landscape-85% of                                                                                            |
|                    | land components polygons in which species records occur are lower plains, gentle lower                                                                                              |
|                    | slopes or steep lower slopes (i.e. incised streams).                                                                                                                                |
| Data               | LIST Hydline and Hydarea layers.                                                                                                                                                    |
|                    | Land systems components layer (NRP layer).                                                                                                                                          |
| Model status       | Nodel tested and used in the REM.                                                                                                                                                   |
| Known issue        | DPIPWE provided advice on 30 January 2014 that it needs to generate a new range                                                                                                     |
|                    | boundary for the species to reflect a minor change to the western boundary. This occurred                                                                                           |
|                    | after the species model had been developed and may need to be incorporated into a future revision                                                                                   |
|                    | Tevision.                                                                                                                                                                           |

## Species: Chaostola Skipper Antipodia chaostola

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Core range                | The core range of the chaostola skipper is a 2 km (radius) buffer centred on the known sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Potential range           | The potential range of the chaostola skipper is the distribution of <i>Gahnia radula</i> and <i>G. microstachya</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential<br>habitat      | Potential habitat for the chaostola skipper is dry forest and woodland supporting <i>Gahnia radula</i> (usually on sandstone and other sedimentary rock types) or <i>Gahnia microstachya</i> (usually on granite-based substrates).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CARSAG<br>habitat model   | Sites identified by Neyland (1994 <sup>15</sup> ) as having good stands of <i>Gahnia radula</i> which provide suitable habitat for the species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| REM habitat<br>model      | <ol> <li>Areas within 200 m of known locations.</li> <li>Native vegetation in the Core Range that is dry eucalypt forest (Tasveg "D"), native grassland (Tasveg "G") or dry scrub types (SCH, SHL, SHU).</li> <li>Native vegetation that is dry eucalypt forest (Tasveg "D"), native grassland (Tasveg "G") or dry scrub types (SCH, SHL, SHU).</li> <li>Native vegetation that is dry eucalypt forest (Tasveg "D"), native grassland (Tasveg "G") or dry scrub types (SCH, SHL, SHU) on land system polygons within 5km of the Core Range which are sedimentary or acid igneous (granitic) rock types, &lt;300 m altitude and &lt;750 mm rainfall</li> </ol>                                                                                                       |
| Notes<br>Data             | The use of <i>G. radula</i> and <i>G. microstachya</i> as a predictor of potential habitat on its own is<br>not supported by data on environmental characteristics of the species recorded locations.<br>91% of Chaostola Skipper records occur on sediments (though the number of known sites is<br>small so this figure may not be reliable). In comparison, only 42% of the <i>Gahnia</i> species<br>records occur on sediments.<br>There are additional strong associations with rainfall, with 82% of Chaostola Skipper<br>locations in areas with <750 mm rainfall, and altitude, with 93% of locations on areas <300<br>m ASL.<br>The species also has a strong association with distance from the coast, with no records<br>location more than 21km inland. |
| Model status              | Model developed and tested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | DDIDWE advised on 20 January 2014 that it peads to undate the range boundary for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Known Issues              | species to include new populations at Grasstree Hill and Buckland. This occurred after the species model had been developed and may need to be incorporated into a future revision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

<sup>&</sup>lt;sup>15</sup> Neyland, M. (1994). The ecology & conservation status of three rare hesperiid butterflies in Tasmania. Wildlife Report 94/3, Parks & Wildlife Service, Hobart.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## Species: Chequered Blue Butterfly Theclinesthes serpentata subsp. lavara

| Species                   | Definition                                                                                                                                                                                                                              |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                         |
| FPA attributes            |                                                                                                                                                                                                                                         |
| Core range                | The core range of the chequered blue butterfly is a 500 m (radius) buffer centred on the known sites.                                                                                                                                   |
| Potential range           | The potential range of the chequered blue butterfly includes the core range and specialist-<br>defined extensions of the core range that may support the species based on habitat<br>characteristics but are as yet largely unsurveyed. |
| Known range               | N/A                                                                                                                                                                                                                                     |
| Potential habitat         | Potential habitat for the chequered blue butterfly is saltmarshes, and beach and coastal habitats, supporting food plants including <i>Rhagodia candolleana</i> (coastal saltbush) and species of <i>Atriplex</i> .                     |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                     |
| Other habitat definitions | N/A                                                                                                                                                                                                                                     |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                     |
| Other                     | N/A                                                                                                                                                                                                                                     |
| information               |                                                                                                                                                                                                                                         |
| REM habitat               | <ol> <li>LIST coastal flats (field [Hydarty1]) and tide zones (field [Hydarty1]) that are<br/>unvegetated mudflats (field [Hydarty2]) adjoining Pitt Water Lagoon.</li> </ol>                                                           |
| moder                     | 2. The Potential Range.                                                                                                                                                                                                                 |
|                           | 3. Saltmarsh communities contiguous with the Potential Range.                                                                                                                                                                           |
| Notes                     | The Potential Range polygon is the foreshore of Pitt Water Lagoon.<br>Available vegetation mapping of the foreshore is too coarse to delineate much of the<br>potential habitat within the Potential Range.                             |
| Data                      | LIST Hydarea layer.                                                                                                                                                                                                                     |
| Model status              | The species occurs outside the FT area of interest.<br>A shapefile of the habitat based on the REM habitat model has been prepared but has not<br>been tested.                                                                          |

## Species: Chevron Looper Moth Amelora acontistica

| Species                   | Definition                                                                                                                                                                                                                         |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                    |
| FPA attributes            |                                                                                                                                                                                                                                    |
| Core range                | The core range of the chevron looper moth is a 500 m (radius) buffer centred on the known sites.                                                                                                                                   |
| Potential range           | The potential range of the chevron looper moth includes the core range and specialist-<br>defined extensions of the core range that may support the species based on habitat<br>characteristics but are as yet largely unsurveyed. |
| Known range               | N/A                                                                                                                                                                                                                                |
| Potential habitat         | Potential habitat for the chevron looper moth is saltmarshes, saltpans, and adjacent grasslands and grassy forest/woodland (within the same catchment as, and adjacent to saline habitats).                                        |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                |
| Other habitat definitions | N/A                                                                                                                                                                                                                                |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                |
| Other<br>information      | N/A                                                                                                                                                                                                                                |
| REM habitat<br>model      | Native vegetation within the Core Range.                                                                                                                                                                                           |
| Notes                     | The Core Range is sufficiently small that all native vegetation is included.                                                                                                                                                       |
| Data                      | To be attributed in NRP Atomic Planning Units.                                                                                                                                                                                     |
| Model status              | No additional modelling needed.<br>Model delivered through the NVA records based modelling process of the REM.<br>Species occurs outside FT area of interest, so no area in the REM is attributed for the<br>species.              |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## Species: Furneaux Burrowing Crayfish Engaeus martigener

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Potential range           | The potential range of the Furneaux burrowing crayfish, for the purposes of the TFA, is the Furneaux islands (primarily Flinders and Cape Barren islands).                                                                                                                                                                                                                                                                                                                                                                                     |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Potential<br>habitat      | Potential habitat for the Furneaux burrowing crayfish includes boggy areas and small clear water creeks in high altitude wet ferny gullies (Horwitz 1990a <sup>16</sup> ; Doran & Richards 1996 <sup>17</sup> ). These areas appear to be the stronghold of the species, although recent survey work has also located populations at lower altitudes and in a poorly-drained mossy tea-tree bog and a small grassy spring/soak in open dry eucalypt forest (UTas, unpubl. data). The species occupies a type 2 burrow habitat (Horwitz 1990a). |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| REM habitat<br>model      | <ol> <li>Native vegetation within 200 m of known locations.</li> <li>Contiguous native riparian vegetation within 500 m of NVA records located within or<br/>adjacent to riparian areas.</li> <li>Native riparian vegetation within the Potential Habitat.</li> </ol>                                                                                                                                                                                                                                                                          |
| Notes                     | There are no records in the NVA for the northern-most of the three polygons of the<br>Potential Habitat.<br>REM habitat attribute 3 to be coded separately to distinguish from habitat associated with<br>known locations.                                                                                                                                                                                                                                                                                                                     |
| Data                      | LIST Hydline and Hydarea layers.<br>Riparian zones generated through the REM process.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Model status              | Model not developed.<br>The species range is outside the FT area of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

<sup>&</sup>lt;sup>16</sup> Horwitz, P. (1990). The conservation status of Australian freshwater crustacea (with a provisional list of threatened species, habitats & potentially threatening processes). Report Series 14, Australian National Parks & Wildlife Service, Canberra.

<sup>&</sup>lt;sup>17</sup> Doran, N. & Richards, K. (1996). Management requirements for rare & threatened burrowing crayfish in Tasmania. Report to the Tasmanian Regional Forest Agreement Environment & Heritage Technical Committee, November 1996.

## Species: Giant Freshwater Crayfish Astacopsis gouldi

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FPA                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| attributes                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential range           | The potential range of the giant freshwater crayfish extends from the Arthur River, in<br>Tasmania's northwest, across the north of the State to the Ringarooma River, including the<br>Arthur River catchment and all river catchments flowing into Bass Strait, with the exception<br>of the Tamar catchment. In addition, the species has been introduced to two catchments:<br>the North Esk catchment (St Patricks River) and the Derwent catchment River Clyde).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential<br>habitat      | Potential habitat for the giant freshwater crayfish is freshwater streams of all sizes.<br>Characteristics of potential habitat include a combination of well-shaded flowing and still waters, deep pools, decaying logs and undercut banks. Riparian vegetation needs to be predominantly intact to provide shade, nutrient, energy and structural inputs into streams.<br>Smaller juveniles inhabit shallow fast-flowing streams favouring habitats with rocks or logs that are large enough to be stable but not embedded in finer substrates, but overlie coarser substrates and/or have a distinct cavity underneath. Perennial headwater streams have substantially higher juvenile densities than non-perennial headwater streams. See FPA's Fauna Technical Note 3 <sup>18</sup> for guidance on how to identify categories of potential habitat suitability (high suitability habitat, moderate suitability habitat and low suitability habitat) of class 4 streams. The GFC Habitat Suitability Map may be used in the assessment of habitat suitability for all other stream classes, however on ground assessment is recommended. |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CARSAG<br>habitat model   | Known populations: Riparian native vegetation contiguous (to 100 m interval) with known<br>locations to a distance of about 2km upstream and downstream.<br>Modelled habitat: Riparian native vegetation in patches of natural vegetation >200ha and<br>below 400 m in catchments where species known to occur. More general tags used on map<br>sheets where riparian zone not defined due to lack of completed Tasveg mapping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Other                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| information               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| REM habitat<br>model      | <ol> <li>Native riparian vegetation of vegetation communities of sufficient height to shade<br/>streams that are in biophysical naturalness classes 2-5 and within two kilometres of<br/>recorded locations and within the Potential range.</li> <li>Native riparian vegetation of communities of sufficient height to shade streams that is<br/>within the Potential Range and:         <ul> <li>is in biophysical naturalness classes 2-5; and</li> <li>is classified as medium or high habitat suitability on the Forest Practices Authority habitat<br/>suitability map layer.</li> </ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Notes                     | Vegetation communities of sufficient height to shade streams is taken to mean dry eucalypt<br>forest (Tasveg "D"), wet eucalypt forest (Tasveg "W"), rainforest and related scrub (Tasveg<br>"R"), non-eucalypt forest and woodland (Tasveg "N") and scrub, heath and coastal<br>complexes (Tasveg "S", H").<br>Lower biophysical naturalness classes are more likely to not shade streams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

<sup>&</sup>lt;sup>18</sup> Forest Practices Authority (2013). Assessing juvenile Giant Freshwater Crayfish habitat in Class 4 streams. Draft Fauna Technical Report No. 3 (v0.3, June 2013), Forest Practices Authority, Hobart.

| Species<br>attribute | Definition                                                                                                                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Data                 | FPA habitat suitability layer.<br>Biophysical naturalness from NRP Atomic Planning Units, updated with Forestry Tasmania<br>disturbance data. |
| Model status         | Model tested and used in the REM.                                                                                                             |

# Species: Giant Velvet Worm Anopthalmus barretti

| Species attribute         | Definition                                                                                                                                                                                                                                                  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                             |
| Core range                | N/A                                                                                                                                                                                                                                                         |
| Potential range           | N/A                                                                                                                                                                                                                                                         |
| Known range               | The known range of the giant velvet worm is defined by a minimum convex polygon around known sites.                                                                                                                                                         |
| Potential habitat         | Potential habitat for the giant velvet worm includes wet sclerophyll forest grading into rainforest or mixed forest and dry forest within its known range.                                                                                                  |
| Significant habitat       | Significant habitat for the giant velvet worm is all potential habitat within the known range.                                                                                                                                                              |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                         |
| CARSAG habitat<br>model   | APUs of wet, damp and riverine eucalypt forests in good biophysical condition (Use_bn >=3) within known range.                                                                                                                                              |
| Other<br>information      | N/A                                                                                                                                                                                                                                                         |
| REM habitat<br>model      | <ol> <li>Areas within 100 m of known locations or native eucalypt forests within 200 m.</li> <li>Areas of wet eucalypt forest ("W" codes) or riparian dry forests ("D" codes) or scrubs ("S" codes) within two kilometres of recorded locations.</li> </ol> |
| Notes                     | There are no strong landform associations with this species.<br>There are some relatively large gaps between recorded locations within the Known<br>Range, hence the use of the distance function in rule 2.                                                |
| Data                      |                                                                                                                                                                                                                                                             |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                           |

## Species: Great Lake invertebrates

#### (Onchotelson brevicaudatus, O. spatulatus, Mesacanthotelson setotus, M. tasmaniae, Tasniphargus tyleri, Uramphisopus pearsoni)

| Species                   | Definition                                                                                                                                                                                                                                                                    |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                               |
| FPA attributes            |                                                                                                                                                                                                                                                                               |
| Core range                | N/A                                                                                                                                                                                                                                                                           |
| Potential range           | The potential range of Great Lake invertebrates is the catchments of Great Lake and Shannon Lagoon.                                                                                                                                                                           |
| Known range               | N/A                                                                                                                                                                                                                                                                           |
| Potential habitat         | Potential habitat for Great Lake invertebrates is all waterbodies (including streams) and riparian vegetation (including lakeside vegetation) within the potential range of the species.                                                                                      |
| Significant habitat       | N/A                                                                                                                                                                                                                                                                           |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                           |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                                                                                                                           |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                           |
| REM habitat<br>model      | <ol> <li>LIST waterbodies and adjoining wetlands contiguous with Shannon Lagoon and Great<br/>Lake (i.e. the Known Ranges).</li> <li>Native riparian vegetation contiguous within 500 m of 1.</li> </ol>                                                                      |
| Notes                     | None of the Known Range or Potential Range polygons include Shannon Lagoon.<br>Riparian zones within the Potential Range may contain areas that need to be managed,<br>however habitat is considered to be more closely tied to the waterbodies that form the<br>Known Range. |
| Data                      | LIST Hydline and Hydarea layers.                                                                                                                                                                                                                                              |
| Model status              | Model not developed.<br>The range of these species does not encompass any of the FT area of interest.                                                                                                                                                                         |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## Species: Green-lined Ground Beetle Catadromus lacordairei

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FPA                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| attributes                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Core range                | The core range of the green lined ground beetle is a 500 m (radius) buffer centred on the known sites.                                                                                                                                                                                                                                                                                                                                                                                                      |
| Potential range           | The potential range of the green-lined ground beetle includes the core range and specialist defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed.                                                                                                                                                                                                                                                                           |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Potential<br>habitat      | Potential habitat for the green-lined ground beetle is open, grassy/sedgy, low altitude grasslands and woodlands associated with wetlands and low-lying plains or flats adjacent to rivers/streams. Key habitat elements that need to be present include sheltering sites such as patches of stones, coarse woody debris and/or cracked soils. The species is a highly active and mobile flyer that often comes to ground close to water sources and is rarely found further than 250 m from such a source. |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CARSAG                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| habitat model             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| REM habitat<br>model      | <ol> <li>LIST waterbodies and wetlands intersecting the Core Range or within 250 m of NVA recorded locations.</li> <li>Native vegetation or land system components that are lower plains or gentle lower slopes within 250 m of 1.</li> </ol>                                                                                                                                                                                                                                                               |
| Notes                     | NVA Known Range polygons matches the description for the Core Range.<br>The Potential Range is extremely large relative to the Core Range.<br>Land systems components used to approximate topographic characteristics described in the<br>Potential Habitat.                                                                                                                                                                                                                                                |
| Data                      | Land systems components layer (NRP data).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Model status              | Model not developed. All known locations are outside of FT area of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Species: Keeled Snail Tasmaphena lamproides

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Core range                | The core range of the keeled snail is based on known sites and potential habitat.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Potential range           | The potential range of the keeled snail includes the core range and specialist-defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed.                                                                                                                                                                                                                                                                                                    |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Potential<br>habitat      | Potential habitat for the keeled snail is mature, regrowth and regenerating forests, predominantly wet eucalypt but also including some rainforest and blackwood.                                                                                                                                                                                                                                                                                                                                                       |
| Significant<br>habitat    | Significant habitat for the keeled snail is all potential habitat within the core range supporting a high density of live Keeled Snails and/or the habitat patch is important for connectivity of significant or potential habitat.                                                                                                                                                                                                                                                                                     |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CARSAG<br>habitat model   | APUs of wet forest and Blackwood swamp forests in good condition (Use_BN=3-5) within<br>the main range of the species, plus within 200 m of other known locations. Other record<br>locations inspected and APUs tagged to represent species presence, including a small<br>number where no forest occurs.                                                                                                                                                                                                               |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REM habitat<br>model      | <ol> <li>200 m of known locations.</li> <li>Wet eucalypt forest ("W" codes), rainforest ("R" codes) and blackwood forests (NAF,<br/>NAR) on land system polygons with sedimentary argillaceous geology and within two<br/>kilometres of known locations.</li> </ol>                                                                                                                                                                                                                                                     |
| Notes                     | Density of live snails is likely to only be detectable at the operational level.<br>All NVA record locations are on land systems characterised as occurring below 300 m.<br>95% of NVA record locations are on land system polygons characterised by argillaceous<br>sedimentary geology, however the geological association is much weaker when compared<br>with 1:25,000 geology and may be related to other factors in the land system classification<br>(e.g. soils, landform, rainfall), or biogeographic history. |
| Data                      | Land systems polygons layer (NRP updated version of DPIPWE layer).                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## Species: Lake Fenton Trapdoor Spider Plesiothele fentoni

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Potential range           | The potential range of the Lake Fenton trapdoor spider is a 5 km (radius) buffer centred on the known sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Potential<br>habitat      | Potential habitat for the Lake Fenton trapdoor spider is: (1) rainforest, mixed forest (i.e. wet eucalypt forest with distinct secondary canopy comprising typical rainforest species), mature wet eucalypt forest (i.e. wet forest with rainforest species such as myrtle and sassafras becoming prevalent in the understorey) in the Tarraleah area; (2) subalpine <i>Eucalyptus coccifera</i> woodland and subalpine scrub on dolerite scree in the Lake Fenton area.                                                                                                                             |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| REM habitat<br>model      | <ol> <li>Patches of the following Tasveg communities within the Potential Range at Lake Fenton:<br/>DCO, ORO, SHS, SLW and SMM.</li> <li>Patches of the following vegetation types within the Tarraleah Potential Range polygons:         <ul> <li>Tasveg rainforests ("R" codes) and wet eucalypt forest with a rainforest understorey (none currently mapped but primarily includes WRE, WVI, WDR, WOR); and</li> <li>Tasveg wet eucalypt forests with PI-type classes indicating forest is predominantly mature and has myrtle, sassafras or blackwood in the understorey.</li> </ul> </li> </ol> |
| Notes                     | Two of the Potential Range polygons for this species have no NVA records of the species within them. It has been assumed that the centroid of the polygons represent known locations.                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data                      | PI-type data on mature and regrowth percentage crown cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Species: Marrawah Skipper Oreisplanus munionga subsp. larana

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Core range                | The core range of the Marrawah skipper is a 2 km (radius) buffer centred on the known sites.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Potential range           | The potential range of the Marrawah skipper includes the core range and specialist-defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed.                                                                                                                                                                                                                                                                                                             |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Potential<br>habitat      | Potential habitat for the Marrawah skipper is any vegetation type, including forest (native and plantation) and nonforest native and non-native types, with an understorey either dominated by <i>Carex appressa</i> or supporting <i>Carex appressa</i> in patches (as small as 20 square metres).                                                                                                                                                                                                                                  |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| REM habitat<br>model      | <ol> <li>Native vegetation within 500 m of recorded locations.</li> <li>Land system components that are lower plains, adjacent elevated plains, or gentle lower slopes within the Core Range and are native or induced vegetation types.</li> </ol>                                                                                                                                                                                                                                                                                  |
| Notes                     | The association of the species with small patches of <i>Carex appressa</i> makes modelling difficult, due to its fine scale.<br><i>C. appressa</i> has no strong associations with rainfall, geological age, substrate or landscape-scale landform, but a moderate association with altitude (67% of records below 300 m).<br>Within the Core Range <i>C. appressa</i> has been recorded almost exclusively (91% of records) on flat areas (land system components lower plains or locally elevated plains) and gentle lower slopes. |
| Data                      | Land systems components layer (NRP layer).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Species: Miena Jewel Beetle Castiarina insculpta

| Species                   | Definition                                                                                                                                                                                                                                                                                                                     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                |
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                            |
| Potential range           | The potential range of the Miena jewel beetle is a 3 km (radius) buffer centred on the known sites.                                                                                                                                                                                                                            |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                            |
| Potential habitat         | Potential habitat for the Miena jewel beetle is open forest, woodland and low shrubby vegetation above c. 900 m elevation.                                                                                                                                                                                                     |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                            |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                            |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                            |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                            |
| REM habitat<br>model      | <ol> <li>Areas with 500 m of recorded locations (excluding aquatic and wetland vegetation codes.</li> <li>Native vegetation within three kilometres of recorded locations which is dry eucalypt forests ("D" codes), native grasslands ("G" codes), highland treeless vegetation ("H" codes) or scrubs ("S" codes).</li> </ol> |
| Notes                     | The Potential Range polygon does not match the description given.                                                                                                                                                                                                                                                              |
| Data                      |                                                                                                                                                                                                                                                                                                                                |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                              |
| Known issue               | DPIPWE provided advice on 30 January 2014 that it needs to generate a new range boundary for the species to reflect new data. This occurred after the model had been developed and may need to be incorporated into a future revision.                                                                                         |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## Species: Mount Arthur Burrowing Crayfish Engaeus orramakunna

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Core range                | The core range of the Mt Arthur burrowing crayfish is a minimum convex polygon around known sites.                                                                                                                                                                                                                                                                                                                                                                    |
| Potential range           | The potential range of the Mt Arthur burrowing crayfish includes the core range and specialist-defined extensions of the core range that may support the species but are as yet largely unsurveyed.                                                                                                                                                                                                                                                                   |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Potential<br>habitat      | Potential habitat for the Mt Arthur burrowing crayfish includes any poorly drained habitats<br>such as streams (of any class and disturbance history), seepages (e.g. springs in forest or<br>pasture, outflows of farm dams), low-lying flat swampy areas and vegetation (e.g.<br>buttongrass and heathy plains, marshy areas, boggy areas of pasture), drainage depressions,<br>ditches (artificial and natural, including roadside ditches, pasture drains, etc.). |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CARSAG<br>habitat model   | Riparian native vegetation within known range. Native vegetation within 100 m of known sites, plus some small areas of cultural vegetation types within same distance (see Doran and Richards 1996 <sup>19</sup> ).                                                                                                                                                                                                                                                   |
| Other                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| information               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| REM habitat<br>model      | <ol> <li>100 m around NVA record locations.</li> <li>All areas of the same land components on which the species has been recorded,<br/>excepting water and rock.</li> </ol>                                                                                                                                                                                                                                                                                           |
| Notes                     | There are no strong associations between landform and bed slope for this species.<br>Component 2 of the model applies to any land component polygon of the same type of<br>those on which the species has been recorded, irrespective of it having been recorded on<br>the particular polygon, so long as it intersects the known range.                                                                                                                              |
| Data                      | LIST Hydline and Hydarea layers.<br>Riparian zones are generated within the REM process.                                                                                                                                                                                                                                                                                                                                                                              |
| Model status              | Model tested and used in the REM. The land components which form the basis of the model are attributed as a subset of polygons within the NRP land systems components data layer.                                                                                                                                                                                                                                                                                     |

<sup>&</sup>lt;sup>19</sup> Doran, N. & Richards, K. (1996). Management requirements for rare & threatened burrowing crayfish in Tasmania. Report to the Tasmanian Regional Forest Agreement Environment & Heritage Technical Committee, November 1996.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## Species: Mt Mangana Stag Beetle Lissotes menalcas

|                        | D. C. datan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species<br>attribute   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FPA                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| attributes             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Core range             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Potential range        | The potential range of the Mt Mangana stag beetle includes the known range and specialist-<br>defined extensions of the known range that may support the species based on habitat<br>characteristics but are as yet largely unsurveyed (including all of South Bruny Island,<br>Tasman/Forestier and Tinderbox peninsulas).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Known range            | The known range of the Mt Mangana stag beetle includes the areas encompassed within the minimum convex polygons around known localities, calculated for the three main parts of the species' range (Southern Forests, South Bruny, and Tasman/Forestier peninsulas).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Potential<br>habitat   | Potential habitat for the Mt Mangana stag beetle is any eucalypt forest that contains rotting logs (often numerous, and usually greater than about 40 cm diameter at mid-log length) below about 650 m a.s.l. (generally moist habitats that have not been subject to high intensity or frequent fires in about the last 20 years). The species has a patchy distribution within areas of potential habitat. Some rainforest will support the species, although in low densities as the species has an apparent preference for eucalypt logs. In terms of using mapping layers, potential habitat is all areas with at least 5% mature Eucalypt crown cover (PI-type mature density class 'a', 'b', 'c', or 'd') that is also mapped as 'wet forest' under TASVEG or another forest type that is within 50 m of a freshwater source (e.g. stream or wetland). (v1.6 update of FPA document – see Notes). |
| Significant<br>habitat | Significant habitat for the Mt Mangana stag beetle is all potential habitat within the known range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Other habitat          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| definitions            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CARSAG                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| habitat model          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Other                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| information            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| REM habitat            | 1. Areas within 200 m of known locations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| model                  | 2. Areas within the known range that are on land system polygons in which the species has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | been recorded, and are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | - rinarian zones of dry eucalynt forests: or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | - rainforest in riparian zones where adjacent to eucalypt forest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Notes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Data                   | PI-type maturity classifications for the species range.<br>LIST Hydline and Hydarea layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Model status           | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Known issues           | V1.6 of the FPA document was released after the model was developed. The previous description did not include the criteria listed after ("In terms of using mapping layers".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Species: Plomleys Trapdoor Spider Migas plomleyi

| Species attribute         | Definition                                                                                                                                                                      |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                 |
| Core range                | N/A                                                                                                                                                                             |
| Potential range           | The potential range of the Plomleys trapdoor spider is a 750 m (radius) buffer centred on the known sites.                                                                      |
| Known range               | N/A                                                                                                                                                                             |
| Potential habitat         | Potential habitat for the Plomleys trapdoor spider is native vegetation (but can be disturbed) with extensive rock exposures that have well developed moss and/or lichen cover. |
| Significant habitat       | N/A                                                                                                                                                                             |
| Other habitat definitions | N/A                                                                                                                                                                             |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                             |
| Other<br>information      | N/A                                                                                                                                                                             |
| REM habitat<br>model      | Land systems components that are steep mid slopes within 750 m of recorded locations, excluding urban areas (Tasveg FUR)/                                                       |
| Notes                     | Potential Range polygon not available on NVA website.                                                                                                                           |
| Data                      | Land systems components layer (NRP layer).                                                                                                                                      |
| Model status              | Model has not been developed as species occurs well outside FT area of interest.                                                                                                |

## Species: Ptunarra Brown Butterfly Oreixenica ptunarra

| Species<br>attribute      | Definition                                                                                                                                                                                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                            |
| Core range                | The core range of the Ptunarra brown butterfly is the areas in which all known colonies are located.                                                                                                       |
| Potential range           | The potential range of the Ptunarra brown butterfly includes the core range and specialist-<br>defined extensions of the core range based on habitat characteristics but are as yet largely<br>unsurveyed. |
| Known range               | N/A                                                                                                                                                                                                        |
| Potential<br>habitat      | Potential habitat for the Ptunarra brown butterfly is native grasslands, sedgelands, heathlands, shrublands or grassy woodlands with tussock grass ( <i>Poa</i> ) cover of more than 20%.                  |
| Significant<br>habitat    | Significant habitat for the Ptunarra brown butterfly is all potential habitat within the core range.                                                                                                       |
| Other habitat definitions | N/A                                                                                                                                                                                                        |
| CARSAG<br>habitat model   | APUs of dry eucalypt forest and other native vegetation types likely to contain Poa tussocks in areas mapped for the species by Dr Phil Bell. Exclusions: Veg types MBU, SHS, DOB, DCO.                    |

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other<br>information | N/A                                                                                                                                                                                                                                                                                                 |
| REM habitat<br>model | Native vegetation within the Core Range likely to contain tussocks of <i>Poa</i> grasses at more than 20% cover. Tasveg communities included in the attribution are: native grasslands ("G" codes); dry eucalypt forests ("D" codes excluding DCO, DOB, DVS}; MGH; NBA; and heathlands HHE and HSE. |
| Notes                | HHE and HSE are variable communities in terms of <i>Poa</i> tussock grasses. They are included as some substantial areas of the Core Range are dominated by these communities.                                                                                                                      |
| Data                 |                                                                                                                                                                                                                                                                                                     |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                                                   |

# Species: Salt Lake Slater Haloniscus searlei

| Species<br>attribute      | Definition                                                                                                                                                                                     |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                |
| Core range                | N/A                                                                                                                                                                                            |
| Potential range           | The potential range of the salt lake slater is the immediate catchment of salt lakes, lagoon and pans in the Midlands (which includes the two known sites at Tunbridge Lagoon and Bat Lagoon). |
| Known range               | N/A                                                                                                                                                                                            |
| Potential habitat         | Potential habitat for the salt lake slater is all inland saline waters ( salt lakes, lagoon and pans) in the Midlands (which includes the two known sites at Tunbridge Lagoon and Bar Lagoon). |
| Significant habitat       | N/A                                                                                                                                                                                            |
| Other habitat definitions | N/A                                                                                                                                                                                            |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                                            |
| Other<br>information      | N/A                                                                                                                                                                                            |
| REM habitat<br>model      | The Potential Range.                                                                                                                                                                           |
| Notes                     |                                                                                                                                                                                                |
| Data                      |                                                                                                                                                                                                |
| Model status              | No additional modelling required.<br>Habitat is modelled off NVA records in the standard REM modelling process.<br>However, species occurs outside FT area of interest.                        |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## Species: Saltmarsh Looper Moth Dasybela achroa

| Species                   | Definition                                                                                                                                                                                                                                                     |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                |
| FPA attributes            |                                                                                                                                                                                                                                                                |
| Core range                | The core range of the saltmarsh looper moth is a 500 m (radius) buffer centred on the known sites.                                                                                                                                                             |
| Potential range           | The potential range of the saltmarsh looper moth includes the core range and specialist defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed (mainly the South Arm peninsula). |
| Known range               | N/A                                                                                                                                                                                                                                                            |
| Potential habitat         | Potential habitat for the saltmarsh looper moth is saltmarshes, saltpans, and adjacent grasslands and grassy forest/woodland (within the same catchment as, and adjacent to saline habitats).                                                                  |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                            |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                            |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                            |
| Other information         | N/A                                                                                                                                                                                                                                                            |
| REM habitat<br>model      | Native vegetation within the Core Range.                                                                                                                                                                                                                       |
| Notes                     |                                                                                                                                                                                                                                                                |
| Data                      |                                                                                                                                                                                                                                                                |
| Model status              | Modelled not developed.<br>Species occurs outside FT area of interest.                                                                                                                                                                                         |

## Species: Scottsdale Burrowing Crayfish Engaeus spinicaudataus

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Core range           | The core range of the Scottsdale burrowing crayfish is a minimum convex polygon around known sites.                                                                                                                                                                                                                                                                                                                                                                    |
| Potential range      | The potential range of the Scottsdale burrowing crayfish includes the core range and specialist-defined extensions of the core range that may support the species but are as yet largely unsurveyed.                                                                                                                                                                                                                                                                   |
| Known range          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Potential<br>habitat | Potential habitat for the Scottsdale burrowing crayfish includes any poorly drained habitats<br>such as streams (of any class and disturbance history), seepages (e.g. springs in forest or<br>pasture, outflows of farm dams), low-lying flat swampy areas and vegetation (e.g.<br>buttongrass and heathy plains, marshy areas, boggy areas of pasture), drainage depressions,<br>ditches (artificial and natural, including roadside ditches, pasture drains, etc.). |

| Species            | Definition                                                                                   |
|--------------------|----------------------------------------------------------------------------------------------|
| attribute          |                                                                                              |
| Significant        | Significant habitat for the Scottsdale burrowing crayfish is all native vegetation in the    |
| habitat            | immediate catchments of sites where the species is known to occur.                           |
| Other habitat      | N/A                                                                                          |
| definitions        |                                                                                              |
| CARSAG             | N/A                                                                                          |
| habitat model      |                                                                                              |
| Other              | N/A                                                                                          |
| information        |                                                                                              |
| <b>REM habitat</b> | 1. Riparian zones within 200 m of NVA record locations.                                      |
| model              | 2. Native vegetation within riparian zones or within 100 m of streamlines that is within the |
|                    | Core Range and in CFEV river section catchments with a bed slope <2.3 degrees.               |
| Notes              | The Core Range would be better described as the Known Range.                                 |
|                    | There is a strong association with the bed slope of streams – 85% of river sections on which |
|                    | the species have been recorded have a bed slope of <2.3 degrees, and all are less than 5     |
|                    | degrees.                                                                                     |
|                    | There is no clear association between stream class and record locations.                     |
|                    | There is some association between record location and landform – 65% of the land             |
|                    | component polygons that contain records are lower plains or gentie lower slopes.             |
|                    | Inere is an association between record location and vegetation type – 91% of records are     |
| Data               |                                                                                              |
| Data               | LIST Hydline and Hydarea layers.                                                             |
|                    | CEEV rivers data (contains bed slope attribution).                                           |
| Model status       | Model tested and used in the REM.                                                            |

# Species: Schayers Grasshopper Schayera baiulus

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                        |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                    |
| Potential range           | The potential range of the Schayers grasshopper is a 5 km (radius) buffer centred on the known sites.                                                                                                                                                                                                                                                  |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                    |
| Potential<br>habitat      | Potential habitat for the Schayers grasshopper is poorly understood. Based on the habitat at the two known sites (Cape Grim and Red Hills), the species may occupy a range of habitats including poorly-drained pasture, regenerating cleared land (e.g. swamp paperbark and sagg over old pasture), coastal scrub and heath and open heathy woodland. |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                    |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                    |
| CARSAG                    | APUs of native vegetation within 500 m or accurate location records.                                                                                                                                                                                                                                                                                   |
| habitat model             |                                                                                                                                                                                                                                                                                                                                                        |
| Other                     | N/A                                                                                                                                                                                                                                                                                                                                                    |
| information               |                                                                                                                                                                                                                                                                                                                                                        |

| Species<br>attribute | Definition                                                                    |
|----------------------|-------------------------------------------------------------------------------|
| REM habitat<br>model | Areas within 500 m of recorded locations.                                     |
| Notes                | The Known Range polygon available on the NVA is a 500 m buffer, not 5km       |
| Data                 |                                                                               |
| Model status         | The model is operational within the NVA-based modelling procedure of the REM. |

#### Species: Simsons Stag Beetle Hoplogonus simsoni

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potential range           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Known range               | The known range of the Simsons stag beetle is a minimum convex polygon around known sites.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Potential<br>habitat      | Potential habitat for the Simsons stag beetle is all wet forest types (including mixed forest/rainforest) within the known range. (v1.5 update of FPA document – see previous description in Notes).                                                                                                                                                                                                                                                                                               |
| Significant<br>habitat    | Significant habitat for the Simsons stag beetle is all wet eucalypt forest, mixed forest and rainforest <500 m altitude with a leaf litter layer of at least 1cm and a slope <20%, within the known range. (v1.5 update of FPA document – see previous description in Notes).                                                                                                                                                                                                                      |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CARSAG<br>habitat model   | APUs of wet forest and rainforest in good biophysical condition which intersect that part of the model within the species known range, but excluding all but one APU coded for H. bornemisszai where the two species occur together (Richards 1999 <sup>20</sup> ). Plus also such APUs intersecting known locations.                                                                                                                                                                              |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REM habitat<br>model      | <ol> <li>Areas within 200 m of known locations.</li> <li>Wet eucalypt forest ("W" codes) or rainforest ("R" codes) in areas of optimal and sub-<br/>optimal habitat within the Known Range.</li> </ol>                                                                                                                                                                                                                                                                                             |
| Notes                     | The definitions of potential and significant habitat have been altered since the model was developed. Previous terms were:<br>"Potential habitat for the Simsons stag beetle is all wet forest types (including mixed forest/rainforest) within the known range. Potential habitat of the species is further divided into three classes of potential habitat quality based on the predicted frequency of occurrences of individuals (numbers/ha): optimal (high), suboptimal (medium) and marginal |

<sup>&</sup>lt;sup>20</sup> Richards, K. (1999). Occurrence of *Hoplogonus bornemisszai* (Bornemisszas Stag Beetle) & *H. vanderschoori* (Vanderschoors Stag Beetle) in priority coupes, north-east Tasmania. A report to Forestry Tasmania & Forest Practices Board, Hobart.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data                 | <ul> <li>(low). Maps are available of the predicted habitat quality."</li> <li>"Significant habitat for the Simsons stag beetle is all potential habitat where the species occurs in highest numbers (optimal habitat and sub-optimal habitat categories as defined by Meggs et al. 2003<sup>21</sup>) within the known range."</li> <li>"Significant habitat for the Simsons stag beetle is all potential habitat where the species occurs in highest numbers (optimal habitat and sub-optimal habitat where the species occurs in highest numbers (optimal habitat and sub-optimal habitat categories as defined by Meggs et al. 2003<sup>22</sup>) within the known range."</li> <li>"FPA layer of predicted habitat quality for the species.</li> </ul> |
| Model status         | Model tested and used in the REM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Known issues         | Reference to the species habitat model was removed from the FPA description after the model described here had been developed. The model will likely require review and modification in a future revision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Species: Skemps Snail Charopidae sp. "Skemps"

| Species attribute         | Definition                                                                                                                                                                                     |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                                                |
| Core range                | N/A                                                                                                                                                                                            |
| Potential range           | The potential range of the Skemps snail is a specialist-defined zone based on sites supporting the highest reported densities of the species (Myrtle Bank and Whites Mill Road areas).         |
| Known range               | N/A                                                                                                                                                                                            |
| Potential habitat         | Potential habitat for the Skemps snail is wet sclerophyll forest, closed broadleaf shrubbery, mixed forest, rainforest, and wet or damp forest gullies in predominantly dry forest.            |
| Significant habitat       | Significant habitat for the Skemps snail is all potential habitat within the potential range.                                                                                                  |
| Other habitat definitions | N/A                                                                                                                                                                                            |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                                            |
| Other<br>information      | N/A                                                                                                                                                                                            |
| REM habitat<br>model      | <ol> <li>Areas within 100 m of known locations.</li> <li>Tasveg wet forest ("W" codes), rainforest ("R" codes), SBR and riparian dry forest ("D" codes) within the Potential Range.</li> </ol> |
| Notes                     | There are no strong landform associations for this species.                                                                                                                                    |
| Data                      |                                                                                                                                                                                                |

 <sup>&</sup>lt;sup>21</sup> Meggs, J.M., Munks, S.A., Corkrey, R. & Richards, K. (2004). Development & evaluation of predictive habitat models to assist the conservation planning of a threatened lucanid beetle, *Hoplogonus simsoni*, in northeast Tasmania. Biological Conservation, 118(4):501-511.
 <sup>22</sup> Meggs, J.M., Munks, S.A., Corkrey, R. & Richards, K. (2004). Development & evaluation of predictive

<sup>&</sup>lt;sup>22</sup> Meggs, J.M., Munks, S.A., Corkrey, R. & Richards, K. (2004). Development & evaluation of predictive habitat models to assist the conservation planning of a threatened lucanid beetle, *Hoplogonus simsoni*, in north-east Tasmania. Biological Conservation, 118(4):501-511.

| Species attribute | Definition                        |
|-------------------|-----------------------------------|
| Model status      | Model tested and used in the REM. |

# Species: Southern Hairy Red Snail Chloritobadistes victoriae

| Species attribute            | Definition                                                                                                                                                   |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes               |                                                                                                                                                              |
| Core range                   | N/A                                                                                                                                                          |
| Potential range              | The potential range of the southern hairy red snail is an expert defined boundary incorporating known sites with a buffer.                                   |
| Known range                  | N/A                                                                                                                                                          |
| Potential habitat            | Potential habitat for the southern hairy red snail is tall mature<br>Banksia/Leptospermum/Melaleuca scrub and tall wet sclerophyll forest.                   |
| Significant habitat          | N/A                                                                                                                                                          |
| Other habitat<br>definitions | N/A                                                                                                                                                          |
| CARSAG habitat<br>model      | APUs of native vegetation within 200 m of record locations on King Island.                                                                                   |
| Other<br>information         | N/A                                                                                                                                                          |
| REM habitat                  | 1. Areas within 100 m of known locations.                                                                                                                    |
| model                        | <ol><li>The Tasveg communities DOV, DVS, WBR, WGK; NME and SSC within the Potential<br/>Range.</li></ol>                                                     |
| Notes                        | One NVA record is located significantly outside the Potential Range.<br>The NVA also now includes a Core Range polygon, however its derivation is not known. |
| Data                         |                                                                                                                                                              |
| Model status                 | Model tested and used in the REM.                                                                                                                            |

## Species: Southern Sandstone Cave Cricket Micropathus kiernani

| Species<br>attribute   | Definition                                                                                                                                                                                                        |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes         |                                                                                                                                                                                                                   |
| Core range             | N/A                                                                                                                                                                                                               |
| Potential range        | The potential range of the southern sandstone cave cricket is the catchment of Bates Creek.                                                                                                                       |
| Known range            | N/A                                                                                                                                                                                                               |
| Potential habitat      | Potential habitat for the southern sandstone cave cricket includes any vegetation type within the catchment of Bates Creek, and specifically sandstone caves, crevices and rock overhangs (known as pseudokarst). |
| Significant<br>habitat | N/A                                                                                                                                                                                                               |

63

| Species<br>attribute      | Definition                                                                                                    |
|---------------------------|---------------------------------------------------------------------------------------------------------------|
| Other habitat definitions | N/A                                                                                                           |
| CARSAG habitat<br>model   | N/A                                                                                                           |
| Other<br>information      | N/A                                                                                                           |
| REM habitat<br>model      | The Potential Range.                                                                                          |
| Notes                     | Habitat features are at too fine a scale to model, hence a precautionary model has been adopted.              |
| Data                      |                                                                                                               |
| Model status              | Model not developed. Species range is marginal to FT area of interest. NVA point based model used as default. |

# Species: Tasmanian Hairstreak Butterfly Pseudalmenus chlorinda tax. myrsilus

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                    |
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                    |
| Core range                | The core range of the Tasmanian hairstreak butterfly is a 2 km (radius) buffer centred on the known sites.                                                                                                                                                                                                                                         |
| Potential range           | The potential range of the Tasmanian hairstreak butterfly includes the core range and specialist-defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed (i.e. most of the Tasman and Forestier peninsulas).                                                          |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                |
| Potential<br>habitat      | Potential habitat for the Tasmanian hairstreak butterfly is dry forest and woodland with <i>Eucalyptus viminalis</i> (white gum) present (any amount) in close association (usually within 50 m) with <i>Acacia</i> species, including <i>A. dealbata</i> (silver wattle), <i>A. mearnsii</i> (black wattle) or <i>A. melanoxylon</i> (blackwood). |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                                |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                                |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                |
| REM habitat<br>model      | Dry eucalypt forests (Tasveg "D") within the Core Range.                                                                                                                                                                                                                                                                                           |
| Notes                     | The species listed in Potential Habitat occur widely in a range of forest communities.                                                                                                                                                                                                                                                             |
| Data                      |                                                                                                                                                                                                                                                                                                                                                    |
| Model status              | Model not developed.<br>Species occurs outside FT area of interest.                                                                                                                                                                                                                                                                                |

64

## Species: Tunbridge Looper Moth Chrysolarentia decisaria

| Species                   | Definition                                                                                                                                                                                                                                                                                                       |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                  |
| FPA attributes            |                                                                                                                                                                                                                                                                                                                  |
| Core range                | The core range of the Tunbridge looper moth is a 500 m (radius) buffer centred on the known sites.                                                                                                                                                                                                               |
| Potential range           | The potential range of the Tunbridge looper moth includes the core range and specialist defined extensions of the core range that may support the species based on habitat characteristics but are as yet largely unsurveyed (relatively small areas around the known sites at Tunbridge Lagoon and Lauderdale). |
| Known range               | N/A                                                                                                                                                                                                                                                                                                              |
| Potential<br>habitat      | Potential habitat for the Tunbridge looper moth is saltmarshes, saltpans, and adjacent grasslands and grassy forest/woodland (within the same catchment as and adjacent to saline habitats).                                                                                                                     |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                              |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                              |
| CARSAG                    | N/A                                                                                                                                                                                                                                                                                                              |
| habitat model             |                                                                                                                                                                                                                                                                                                                  |
| Other                     | N/A                                                                                                                                                                                                                                                                                                              |
| information               |                                                                                                                                                                                                                                                                                                                  |
| REM habitat<br>model      | Native vegetation within the Core Range.                                                                                                                                                                                                                                                                         |
| Notes                     | The Core Range polygon includes an outlier on the summit of Mount Ossa. This needs to be confirmed.                                                                                                                                                                                                              |
| Data                      |                                                                                                                                                                                                                                                                                                                  |
| Model status              | Model not developed.<br>Species occurs outside FT area of interest.                                                                                                                                                                                                                                              |

## Species: Vanderschoors Stag Beetle Hoplogonus vanderschoori

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes       |                                                                                                                                                                                                                                                                                                                                                                                   |
| Core range           | N/A                                                                                                                                                                                                                                                                                                                                                                               |
| Potential range      | N/A                                                                                                                                                                                                                                                                                                                                                                               |
| Known range          | The known range of the Vanderschoors stag beetle is a minimum convex polygon around known sites.                                                                                                                                                                                                                                                                                  |
| Potential<br>habitat | Potential habitat for the Vanderschoors stag beetle is mature wet eucalypt forest, mixed forest, rainforest, including gullies supporting such habitat surrounded by otherwise unsuitable dry forest habitat. Habitat quality may improve with increasing moisture content, leaf litter depth, proportion of coarse woody debris, etc. (v1.5 update of FPA document – see Notes). |

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                   |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Significant<br>habitat    | Significant habitat for the Vanderschoors stag beetle is all potential habitat within the known range.                                                                                                                                                                                                                       |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                          |
| CARSAG<br>habitat model   | APUs mapped as in good biophysical condition and containing wet forest and rainforest in the catchment of the South George River and Mount Albert Rivulet above Saint Columba Falls.                                                                                                                                         |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                          |
| REM habitat<br>model      | <ol> <li>Areas within 200 m of known locations.</li> <li>Tasveg wet eucalypt forests ("W" codes) with biophysical naturalness classes 4 or 5 or Pl-<br/>type mapping indicating old growth, mature or predominantly mature; rainforest ("R" codes<br/>excluding RFE); or wet scrubs (SBR) within the Known Range.</li> </ol> |
| Notes                     | v1.5 update of FPA document added habitat quality description to potential habitat.                                                                                                                                                                                                                                          |
| Data                      | PI-type data with mature and regrowth cover codes.<br>Biophysical naturalness is stored in the NRP Atomic Planning Units layer, and has been<br>updated for State Forests using PI-type disturbance data.                                                                                                                    |
| Model status              | Model tested and used in the REM.                                                                                                                                                                                                                                                                                            |

## Species: Weldborough Forest Weevil Enchymus sp. nov.

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                 |
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                 |
| Core range                | N/A                                                                                                                                                                                                                                                                                                                                             |
| Potential range           | The potential range of the Weldborough forest weevil is a 3 km (radius) buffer centred on the known locality (4.4 km SE of Weldborough - presumed to be the Weldborough Pass Forest Walk).                                                                                                                                                      |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                             |
| Potential<br>habitat      | Potential habitat for the Weldborough forest weevil includes mixed forest and rainforest.                                                                                                                                                                                                                                                       |
| Significant<br>habitat    | N/A                                                                                                                                                                                                                                                                                                                                             |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                             |
| CARSAG<br>habitat model   | N/A                                                                                                                                                                                                                                                                                                                                             |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                             |
| REM habitat<br>model      | <ol> <li>Areas within 200 m of known locations.</li> <li>Areas in the Potential Range with Tasveg rainforest ("R" codes), wet eucalypt forest codes indicating a rainforest understorey (WRE) and other Tasveg wet eucalypt forest with PI-type coding indicating Myrtle (various "M" codes) or Blackwood ("Tb") in the understorey.</li> </ol> |
| Notes                     |                                                                                                                                                                                                                                                                                                                                                 |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

| Species<br>attribute | Definition                            |
|----------------------|---------------------------------------|
| Data                 | PI-type data for the Potential Range. |
| Model status         | Model developed and tested.           |

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.

## 2.5 Mammals

#### Species: Eastern Barred Bandicoot Perameles gunnii

| Species                   | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FPA attributes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Core range                | The core range of the eastern barred bandicoot is the lowlands of the southern, northern and eastern Midlands, extending to coastal areas in the southeast, east and north.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Potential range           | The potential range of the eastern barred bandicoot includes the core range and specialist-<br>defined extensions of the core range (mainly in the northwest, north and northeast) that<br>may support the species based on occurrence of potential habitat and frequency of<br>sightings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Known range               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Potential<br>habitat      | Potential habitat for the eastern barred bandicoot is open vegetation types including woodlands and open forests with a grassy understorey, native and exotic grasslands, particularly in landscapes with a mosaic of agricultural land and remnant bushland.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Significant<br>habitat    | Significant habitat for the Eastern Barred Bandicoot is dense tussock grass-sagg-sedge swards, piles of coarse woody debris and denser patches of low shrubs (especially those that are densely branched close to the ground providing shelter) within the core range of the species. (v1.5 update of FPA document – not previously described).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CARSAG                    | Areas of grassy non-forest and dry eucalypt forests within 1,000 m of recorded locations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| habitat model             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| REM babitat               | Dry eucalynt forest ("D" codes), dry non-eucalynt forest and woodlands ("N" codes NAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| model                     | NAL, NAV, NBA and NBS only) and native grasslands ("G" codes) that are on land system components that are gentle lower slopes, lower plains or adjoining locally elevated plains and are within 5 kilometres of recorded locations and of the same components on which records have been made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Notes                     | The vast majority of NVA records of the species are associated with roads.<br>There is some association of this species with landforms – 72% of records (<=1,000 m<br>accuracy) are on land system components lower in the landscape (gentle lower slopes, lower<br>plains and adjoining locally elevated plains).<br>The interim model described is designed to select similar habitat types within reasonable<br>proximity to those on which the species has been recorded.<br>Individual species locations are not considered significant, however outliers may need to be<br>assessed.<br>Native vegetation is treated as the important habitat due to it providing shelter; foraging<br>occurs on virtually any suitable land.<br>The default point-based model in the REM (native vegetation within 2.5 kilometres of post-<br>1980 recorded locations) will be used with a further restriction to include only native<br>grasslands ("G" codes), dry eucalypt forests ("D" codes) and dry non-eucalypt forest and<br>woodlands (NAD, NAV, NBA, NBS, NCR). |
| Data                      | Land systems components data (NRP layer).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Model status:             | Difficulties in generating a reliable model of this species were identified. The NVA point based modelling process is used as the default.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## **Species: Flinders Island Wombat** *Vombatus ursinus subsp. ursinus*

| Species attribute         | Definition                                                                                                                                                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes            |                                                                                                                                                                           |
| Core range                | N/A                                                                                                                                                                       |
| Potential range           | The potential range of the Flinders Island wombat is the whole of Flinders Island and Clarke Island.                                                                      |
| Known range               | N/A                                                                                                                                                                       |
| Potential habitat         | Potential habitat of the Flinders Island wombat is virtually any vegetation type including farmland, forest, woodland and scrub habitats.                                 |
| Significant habitat       | N/A                                                                                                                                                                       |
| Other habitat definitions | N/A                                                                                                                                                                       |
| CARSAG habitat<br>model   | N/A                                                                                                                                                                       |
| Other information         | N/A                                                                                                                                                                       |
| REM habitat<br>model      | No habitat-based model is proposed at this stage.<br>The default point-based model in the REM is native vegetation within one kilometre of<br>recorded locations.         |
| Notes                     | Only five NVA records of the species have a positional accuracy <1,000 m.<br>All are located in or close to the Wingaroo Nature Reserve and Foochow Conservation<br>Area. |
| Data                      |                                                                                                                                                                           |
| Model status:             | Model is operational within the NVA point models in the REM.<br>Species range is well outside FT area of interest, so REM not populated with this species.                |

## Species: New Holland Mouse Pseudomys novaehollandiae

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Core range           | The core range of the New Holland mouse is a 3 km (radius) buffer centred on the known sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Potential range      | The potential range of the New Holland mouse includes the core range and specialist-<br>defined extensions of the core range that may support the species but are as yet largely<br>unsurveyed (extends to within c. 15 km inland) from between Boltons Beach (east coast)<br>around to East Devonport (north coast), including the Furneaux islands.                                                                                                                                                                                                              |
| Known range          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potential<br>habitat | Potential habitat for the New Holland mouse is heathlands (mainly dry heathlands but also where dry heathlands form a mosaic with other heathland, moorland and scrub complexes), heathy woodlands (i.e. eucalypt canopy cover 5-20%), <i>Allocasuarina</i> -dominated forests on sandy substrates (not dolerite or basalt), and vegetated sand dunes. Key indicator plant species include (but are not restricted to) <i>Aotus ericoides, Lepidosperma concavum, Hypolaena fastigiata</i> and <i>Xanthorrhoea</i> spp. (v1.5 update of FPA document – see Notes). |

69

| Species<br>attribute      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Significant<br>habitat    | Significant habitat for the New Holland mouse is all potential habitat within the core range of the species.                                                                                                                                                                                                                                                                                                                |
| Other habitat definitions | N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CARSAG<br>habitat model   | APUs of potentially heathy coastal natural vegetation (Use_BN >=2) within 500 m or recorded sites with good locational accuracy.                                                                                                                                                                                                                                                                                            |
| Other<br>information      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |
| REM habitat<br>model      | Areas within the Core Range with the following characteristics:<br>- dry heathlands and scrubs (SAC, SCA, SCH, SCW, SDU, SHG, SHL, SHU);<br>- dry eucalypt forests coded by Tasveg as woodlands, or having PI-type density classes "d" or<br>"f" for mature eucalypt (<20% crown cover) or "f" for regrowth eucalypt (<10% crown<br>cover);<br>- Tasveg communities NAL, NAV and on geology that is not dolerite or basalt. |
| Notes                     | V1.5 update of FPA document added indicator plant species.                                                                                                                                                                                                                                                                                                                                                                  |
| Data                      | PI-type data for mature and regrowth cover within Core Range.<br>MRT geological mapping, 1:25k where available, 1:250k elsewhere.                                                                                                                                                                                                                                                                                           |
| Model status              | Model not developed.<br>Species occurs only peripherally to one part of the FT area of interest (west Tamar).<br>Adequacy of model difficult to assess unless larger area covered.                                                                                                                                                                                                                                          |

## Species: Spotted-tailed Quoll Dasyurus maculatus

| Species<br>attribute   | Definition                                                                                                                                                                                                                                                                                                               |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA<br>attributes      |                                                                                                                                                                                                                                                                                                                          |
| Core range             | The core range of the spotted-tailed quoll is currently mapped from the work of Jones & Rose (1996 <sup>23</sup> ), but is soon to be updated on the basis of ongoing survey and modelling work by Troy <i>et al.</i> <sup>24</sup>                                                                                      |
| Potential range        | The potential range of the spotted-tailed quoll is the whole of mainland Tasmania.                                                                                                                                                                                                                                       |
| Known range            | N/A                                                                                                                                                                                                                                                                                                                      |
| Potential<br>habitat   | Potential habitat for the spotted-tailed quoll is coastal scrub, riparian areas, rainforest, wet forest, damp forest, dry forest and blackwood swamp forest (mature and regrowth), particularly where structurally complex and steep rocky areas are present, and includes remnant patches in cleared agricultural land. |
| Significant<br>habitat | Significant habitat for the spotted-tailed quoll is all potential denning habitat within the core range of the species. (v1.5 update of FPA document – not previously described).                                                                                                                                        |

<sup>&</sup>lt;sup>23</sup> Jones, M.E. & Rose, R.K. (1996). Preliminary assessment of distribution & habitat associations of the Spotted-tailed Quoll (*Dasyurus maculatus maculatus*) & Eastern Quoll (*D. viverrinus*) in Tasmania to determine conservation & reservation status. Report to the Tasmanian Regional Forest Agreement Environment & Heritage Technical Committee, November 1996. Tasmanian Public Land Use Commission, Hobart.
<sup>24</sup> PhD thesis in preparation.

| Species                      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attribute                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other habitat<br>definitions | Potential denning habitat for the spotted-tailed quoll includes 1) any forest remnant (>0.5ha) in a cleared landscape that is structurally complex (high canopy, with dense understorey and ground vegetation cover), free from the risk of inundation, or 2) a rock outcrop, rock crevice, rock pile, burrow with a small entrance, hollow logs, large piles of coarse woody debris and caves. (v1.5 update of FPA document – not previously described).                                                                                                                  |
| CARSAG<br>habitat model      | High quality habitat: Patches of natural forest >300ha in size within core areas of species distribution model (170-255) and within 5km of post-1970 accurately recorded locations. Moderate habitat: Patches of natural forest >300ha not in core distribution not in Category 2, plus patches of same size class within 2km of post-1970 accurately recorded locations.                                                                                                                                                                                                  |
| Other<br>information         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| REM habitat<br>model         | <ol> <li>Den sites: Land within 500 m of NVA records of species den sites.<br/>No habitat-based model is proposed at this stage.<br/>The default point-based model in the REM is native vegetation within 2.5 kilometres of<br/>recorded locations.</li> </ol>                                                                                                                                                                                                                                                                                                             |
| Notes                        | The den sites component of the model has been developed to distinguish known dens, which may be sensitive, and habitat which occurs very extensively across Tasmania. The model by Troy <i>et al.</i> has been reviewed but has not been tested in the REM. It appears in many areas similar to the RFA model of Jones and Rose with major differences arising in the choice of threshold to be used (+/- the median value of the model). This needs further investigation. Ongoing review will be required as only one den is recorded in the NVA at the time of writing. |
| Data                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Model status                 | NVA-based default model in use for habitat.<br>Model developed and tested for den sites; however only one den is recorded in the NVA.                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Species: Tasmanian Devil Sarcophilus harrisii

| Species<br>attribute | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPA attributes       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Core range           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential range      | The potential range of the Tasmanian devil is the whole of mainland Tasmania, Robbins Island and Maria Island. (v1.6 update of FPA document).                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Known range          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Potential<br>habitat | Potential habitat for the Tasmanian devil is all terrestrial native habitats, forestry plantations<br>and pasture. Devils require shelter (e.g. dense vegetation, hollow logs, burrows or caves)<br>and hunting habitat (open understorey mixed with patches of dense vegetation) within their<br>home range (4- 27 km2). Potential maternal denning habitat is areas of burrowable, well<br>drained soil or sheltered overhangs such as cliffs, rocky outcrops, knolls, caves and earth<br>banks, free from risk of inundation and with at least one entrance through which a devil<br>could pass. |

| Species<br>attribute         | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Significant<br>habitat       | Significant habitat is a patch of potential denning habitat where three or more entrances (large enough for a devil to pass through) may be found within 100 m of one another, and where no other potential denning habitat with three or more entrances may be found within a 1 km radius, being the approximate area of the smallest recorded devil home range (Pemberton 1990 <sup>25</sup> ). (v1.5 update to FPA document – not previously described). |
| Other habitat<br>definitions | Potential denning habitat for the Tasmanian devil is areas of burrowable, well-drained soil or sheltered overhangs such as cliffs, rocky outcrops, knolls, caves and earth banks, free from risk of inundation and with at least one entrance through which a devil could pass. (v1.5 update to FPA document).                                                                                                                                              |
| CARSAG<br>habitat model      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other<br>information         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| REM habitat<br>model         | <ol> <li>Den sites: Land within 500 m of NVA records of species den sites.</li> <li>No habitat-based model is proposed at this stage.</li> <li>The default point-based model in the REM is native vegetation within 2.5 kilometres of post-2005 recorded locations.</li> </ol>                                                                                                                                                                              |
| Notes                        | Recent sightings are used as a surrogate for extant populations.                                                                                                                                                                                                                                                                                                                                                                                            |
| Data                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Model status:                | Species model is operational within the NVA point models of the REM.                                                                                                                                                                                                                                                                                                                                                                                        |

<sup>&</sup>lt;sup>25</sup> Pemberton D. (1990). Social organisation & behaviour of the Tasmanian devil, *Sarcophilus harrisii*. PhD thesis, University of Tasmania, Hobart.

Biodiversity data models and indicators for Forestry Tasmania Forest Management Unit: Attachment 6 – March 2014. © Natural Resource Planning Pty Ltd ACN 130 109 250. Unauthorised possession, use, copying or distribution prohibited.