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Abstract

A suite of empirical growth and yield nodels has
beest constructed using data front permanent plots
from a ninmber of sources in Tasmania and New
Zealand. Plots include those which fornt part of
experiments fo evaluate thinning/pruning reginies
or altitude effects on growth as well as sample
growth plots. Stand models of mean dominant
height (MDH), basal area, volume and mortality
are given. An individual-tree model of basal area
increment which is compatible with the stand
basal area model, and a model of the relationship
between total lieight and dinmeter (at breast height)
are also given. Site index can be predicted from
the MIDH model and is defined as MIDH at age 15.
The stand basal area model is a modification of
Clutter’s projection model which includes effects
due to age at thinning and thinning intensity. A
ntodel which predicts stand basal area at age 10 for
unthinned stands with stocking between 900 and
1100 stens/ha is also given to facilitate sitnulation
of the growth of hypothetical stands given only
site index. Stands can be 'grown’ forwards or
backwards from age 10 and various thinning
regimes applied if required. When Hiis suite of
models is combined with a stem taper model, yield
by product type can be predicted by 'growing-on’
inventtory or experimental plots. Model fitting
used nixed-model methodology and included a
sonlinear mixed-model fitting procedure
developed for this study to fit the stand basal areq
profection nodel,

Introduction

Shining gum (Eucalyptus nitens) and
Tasmanian bhie gum (E. globulus) are the

major plantation species grown for pulpwood
production in Australia (Whyte 1992).
Eucalyptus nitens is preferred over E. globulus
at higher elevations due to its greater frost
tolerance (Hallam ef al. 1989; Turnbull et al.
1993). Current plantings of E. nifens in
Tasmania total approximately 54 000 ha while
in New Zealand the main Eucalyptus species
planted is E. nitens, with about 4000 ha
planted in the central North Island and
Southland mainly for short fibre pulp and
chip production (Macalister 1995). Interest

in sawlog regimes for E. nitens has also
increased in south-eastern Australia with the
need to find additional sources of hardwood
timber (Gerrand ¢f al. 1997).

This project was initiated to facilitate yield
regulation for the increasing area of E. nitens
plantations in south-eastern Australia and
New Zealand. The models described here
are best suited to projecting yields from
inventory or experimental plots (Candy

and Gerrand 1997) in existing stands

from approximately age three onwards.
Simulations of hypothetical stands for
silvicultural regime evaluation can be carried
out using the models if an estirmate of site
index is available.

When this suite of models is combined with
a stem taper model, yield by product type
can be predicted by 'growing-on’ inventory
or experimental plots. Candy and Gerrand
(1997) use the models described here to grow
on a series of thinning and pruning trial
plots of E. nitens in Tasmania, carry out log
assortments, and simulate financial returns
to the grower.
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Data

Data were supplied by:
s Forestry Tasmania;
» North Forests Burnie;

¢ Forests and Forest Industry Council (FFIC)
{Gerrand ef al. 1997);

* CSIRO Division of Forestry (Beadle and
Turnbull 1986; Turnbull ef al. 1988; Beadle
et al. 1989); and

* Management of Eucalypts Cooperative
(MEC, administered by the Forest
Research Institute, New Zealand).

Mensurational differences befween Australin and
New Zealand

Some of the standard mensurational quantities
are defined differently in New Zealand and
Australia. The key differences for this study
were in the definition of diameter at breast
height (DBH) and dominant height. Diameter
at breast height is over-bark for the remainder
of this study while tree, and therefore stand,
volume are under-bark values. Dominant
height is defined in New Zealand as either
mean top height (MTH) or predominant
mean height (PDH) (Goulding 1986) where
PDH is the mean height of the tallest free on
each (.01 ha section of the plot (i.e. mean of
the tallest 100 trees per hectare} and MTH is
the height predicted by the Petterson function
(Goulding 1986) for a DBH corresponding to
the quadratic mean DBH of the 100 largest
trees (based on DBH) per hectare. Mean
dominant height (MIDH) is the Australian
standard defined similarly to PDH except that
the rate at which MDH trees are selected is 50
per hectare, or one per 0.02 ha plot section,
instead of 100.

In this study, a simple empirical conversion
has been developed by calculating MTH,
PDH, and MBDH where possible {i.e.ifa
sample of tree heights is available for the
measurement) for each New Zealand plot.
Regression relationships were then developed
as given below:

MDH = 0.0065 + 1.10367PDH
MDH = -0.0906 + 1.0311MTH.

The R? for the PDH to MDH regression was
0.999, with error mean square of 0.0984, while
for MTH to MDH, the R? was 0.996, with
error mean square of 0.2841. The suite of
models described here use MPDH, so
conversion to this standard is required before
the models can be applied.

The other difference is in the definition of
‘breast height' for measurement of diameter.
The New Zealand standard is 1.4 m above
ground while the Australian standard is

1.3 m. The definition applied in this study for
breast height was 1.3 m for DBH and basal
area. The New Zealand measured DBHs
were converted to the 1.3 m standard (i.e. a
slight increase of the New Zealand DBH)
(method by A. Gordon, pers, comm.) using an
E. nitens taper model. A simple conversion to
give DBH, 3 from DBH, 4, which is sufficiently
accurate for most practical applications, was
obtained by regression using all New Zealand
measured DBH, 4s in the data and
corresponding estimated DBH; ;3. The
regression equation is

DBH, 5 = 0.13 + 1.0036DBH, 4,

with an R? of 0.999 and standard error of
prediction of 0.064 cm (ignoring regression

parameter estimation error).

Individual-tree entire stem volume was
calculated using a New Zealand E. nitens
taper model, aggregated for all trees on the
plot, and then scaled by plot area to give
stand volume, V.

Data sunimaries

Summaries of the data are given in Tables 1
and 2. Figure 1 shows the age distribution of
plot measurements over all plots (a) and by

plot (b).

Statistical methods

Extensive use has been made of mixed-model
methods in developing the models reported
here. Mixed models allow nested and crossed
random effects to be included in regression
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Table 1. Nuwmber of plots and plotfmeasurements by data source.

Number of measurements

Area of plots Number Total
Data source {or range) (ha) of plots mean min  max measurements
North Forests 0.04 68 6.2 2 13 419
MEC {New Zealand} 0.01-0.30 96 33 2 9 321
FFIC 0.10 51 4.1 3 5 210
Forestry Tasmania 0.056-0.062 5 4.6 4 5 23
CSIRG 0.02 8 50 5 5 40

Table 2. Summary of stand and thinning data. {V = volume, MAI = mean annual increment, MIDH = mean
dominant height) (Table 2b: FFIC = Forests and Forest Industry Council)

(1) Stand data.

Age 14 MAI Altitude Initial stocking  Site index MDH Measurement

(yrs) (m*/ha) (ms/ha/yr) (m) (stems/ha} (age 15} (m) interval (yrs)
Mean 7.4 50.4 10.7 337 1142 26.2 14.7 13
Minimum 2.0 07 0.4 60 100 13.8 1.8 0.2
Maximum 340 7429 424 860 2600 38.9 355 11.5

(b) Thinning data. (Fifty plots thinned once. Figures in brackets are for the 32 FFIC thinned plots.)

Age at thinning Stems retained (stems/ha) % Basal area removed
Mean 6.3 (4.7} 289 (247} 58.4 (60.3)
Minimum 31{3.1} 80 (80} 23.3(23.3)
Maximum 29.0(7.0) 825 (410) 88.6 (88.6)

models taking into account to some degree the
correlation between successive measurements
on sample units (West et al. 1984) which, in this
case, are permanent growth or experimental
plots. Developed originally for linear models,
mixed models have since been expanded to
incorporate generalised linear models (GLM)
(McCullagh and Nelder 1989) and are
abbreviated GLMMs (Schall 1991; Engel and
Keen 1994; Wolfinger and O'Connell 1993;
Brestow and Clayton 1993) and nonlinear
meodels (NLMMSs) (Lindstrom and Bates 1990;
Vonesh and Carter 1992; Davidian and Gallant
1993; Wolfinger 1993). Gregoire et al. (1995)
used a linear mixed model (LMM) which
included random plot effects and a continuous-
time autoregressive conditional error structure

to model stand basal area of Douglas fir and
white pine. Here, the projection form of a
stand basal area model (Clutter ef al. 1983)

is used and random plot effects incorporated
into the nonlinear structure of the model.

An ‘iterated REML' procedure is used for this
NLMM similar to that described by Candy
(1997) for composite link GLMMs which are
intermediate between GLMMs and NLMMs
in degree of nonlinearity (see also McGilchrist
1994). The method developed here to fit the
stand basal area projection model as a NLMM
is similar to that of Lindstrom and Bates
(1990) in that it iterates between a Taylor series
expansion of the nonlinear model and a fit of
the resulting approximate LMM but it differs in
an important way from their method. Thatis,
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Figure 1. Distribution of age at measurement. (a) Histogram and (b) age coverage for individual ploks.

the marginal rather than subject-specific form
of the model is fitted here (see below and
Appendix 1). The models of mortality, stand
volume, and parameters of the individuai-
tree models were each fitted as GLMMs using
the Genstat (Genstat 5 Committee 1993)
GLMM procedure (Payne ef al. 1993).

The use of mixed models is particularly
important when hypothesis testing is required
{under the mixed model) since ordinary

least squares (OLS) estimates of parameter
standard errors and the residual mean square
are known to be biased downwards for
repeated measurements data. The stand basal
area, mortality, and individual-tree models of
basal area increment and total height each
required extensive hypothesis testing to
determine if inclusion of extra covariates such
as site index, altitude, and thinning terms (in
the stand basal area model) were necessary.
For the MDH increment and stand-volume
models, hypothesis testing was unnecessary
since the form of these models is well
established. The marginal rather than
subject-specific (SS) form (Zeger ef al. 1988;
Breslow and Clayton 1993; Candy 1997) of
the GLMM and NLMM were used to provide
population-average parameter estimates (Zeger
et al. 1988; Schabenberger and Gregoire 1996)
since parameter estimates for the 55 model
are biased when used to predict the average
value of the response given the covariates.

MDH increment/site index model

The state-space {Garcia 1994) or projection
form of the Richards model was used to
model MDH (= H) (Model 1}. The equation
for obtaining site index given an MDH of H at
age T is obtained by substituting H for H,, T
for Ty, and 15 for T, in Model 1, with [, then
corresponding to site index (base age 15).

Model 1 was fitted using nonlinear least
squares using Genstat’s FITNONLINEAR
directive. The data were first arranged into
measurement pairs (I, H} at ages {T,, T}},
with H, the response variable which
represents MDHs at measurement 2 to the last
measurement on each plot. H, represents the
MDH at the start of each projection period at
age T7. For a more rigorous notation we could
replace the index 2 by k+1 and the index 1 by
k, where k=1, ..., -1 and 1 is the number of
measurements on the plot {Candy 1939), but
the simpler notation given by the measure-
ment pairs above will be used throughout,
This approach to fitting corresponds to the
state-space {Garcia 1994) or projection form
of the model {Clutter ¢t al. 1983).

Unfortunately, the fitting algorithm did not
converge, with the difficulty identified as the
inability to estimate the asymptote, A. The
young ages of most of the plot measurements
meant that the MDH trajectories with age
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Model 1

T, 1*
1alT :
H, = A 1-{1—[%) } 1 )

where T} is the age at the start and T, the age at the end of the projection period,
H; is the MDH at the start and H, the MDH at the end of the projection period, A
is the parameter representing the asymptotic MDH and « isa shape parameter.

Maodel 2

oy o,
T T
(& v LG

where (B, By} are the stand basal areas giving response and conditioning variable

defined in the same way as those given for MDIL. Stand basal area B, is net basal

area; that is, it excludes trees that have died in the projection period.

were approximately linear. When A was fixed
at one value in a range of 50 and 75 m, the
shape parameter could be successfully
estimated and the minimum residual sum of
squares (RSS) was obtained for A = 50. This is
an unrealistically low asymptote, considering
that some plots already had MDHs of as
much as 35 m by age 15. To overcome this
difficulty, the asymptote for the remainder
was set at 60 m and the shape parameter
estimate of 0.9113 was obtained with standard
error 0.0174. This model accounted for 97.1%
of the variance in MDH, with residual mean
square (RMS) of 1.325. Figure 2a shows the
residuals H, —~ 1:12 (where ﬂz is the value
estimated from (1)) versus age, T,. Figure 2b
shows the same residuals versus the fitted
values, F1,. Figure 3a shows the set of site

index curves derived from (1) while Figure 3b
includes the observed MDH trajectories.

Site index is required as a predictor variable
in some of the models described below. An
estimate of site index can be obtained at

each measurement of each plot in the dataset.

However, site index would then vary with
age, which contradicts the intent that site
index be a measure of site productivity. So,
for the remainder, site index, S, was estimated
using the measurement age closest to the
index age of 15, and this estimate was used
for all measurement periods for the particular
plot to calibrate the models which rely on site
index as input.

Stand basal area projection model

The basic form of the model used (i.e.
excluding thinning effects) is given by
equations (4.42) and (4.43) in Clutter et al.
(1983). The stand basal area, B, instantaneous
growth rate function is

4B _ T'Bley + 045~ o, In(B))

ar

where ¢, ¢, &, are parameters to be estimated
and § is site index as defined earlier. The
projection form of the model, which is at this
stage a state-space model, is given by Model 2.
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Model 2 is consistent (i.e. B, =B, if T, =T})
and path invariant. The property of path
invariance ensures that the same predicted
value of B is obtained irrespective of the
number of intermediate ages at which B is
predicted (Clutter ¢f al. 1983) and is a function
of the state-space definition of (2). However,
this property needs qualification when a
thinning has been carried out or is simulated.
If a thinning occurs at age T), then for
projections of B; after thinning, By in (2)
should be set to the residual basal area at the
thirming age (or initialised at a later age if
inventory is at age T, = T;).

Model 2 has two less desirable features.
Firstly, the growth rate (1) is not defined at
age zero and, as a result, a starting basal
area is required in (2) to obtain a yield curve
for a given site index. The yield curve

corresponding to (2} is given by

B=exp[ﬂ+g—l—5+ﬁf;“2J
Oy O

with the projection model (2} derived from
the yield equation by solving for 8 in terms
of initial age, T, and basal area, B;. So
starting values of basal area and age as well
as site index are required to determine the

yield curve. Secondly, if In(B;)> L] s,
Oy 0
then the relative growth, In(B,)—In(B,), is

Model 3

Let 'linear age components' be

m = Tl +a3pr +O(4PfT, +O{5Pfo5
M =Ty + 3P + oy BTy + o5 B TS

negative. Since the right hand side of the
above inequality is the logarithm of the
asymptotic basal area, then theoretically

this inequality should never be satisfied.
However, the asymptote must be estimated
and it is possible that a measured basal area is
greater than the estimated asymptote but this
is unlikely to occur in practice. Candy (1989,
1997) obtained a projection model from the
same instantaneous growth rate function by
solving for the asymptote rather than and
then modelling the ff and o, parameters

as functions of site index and other stand
variables. The above inequality can never
occur with this 'anamorphic’ projection
model. However, Clutter's "polymorphic’
projection model (2) gave a superior fit to

the dataset here so it was preferred over the
anamorphic projection model.

The above properties of Model 2 do not, in
general, limit its utility as discussed later.

Thinning effects

The simplest way to handle the effect of
thinning is to assume that there is no effect of
thinning on relative growth (i.e. 'grow on' the
residual basal area after thinning using (2)).
Alternatively, thinning may affect relative
growth compared to an unthinned stand of
the same initial basal area, initial age, and
site index. Commonly, thinning effects are
incorporated in basal area projection models

iy @,
then In(B,)= [3—1} In(B; )+ {39_ + ﬂSJ{l _ {%LJ } ®)

where P, is the proportion of basal area removed in thinning at age T;.
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using combinations of age, intensity and
nature of thinning (Bailey and Ware 1983;
Pienaar and Shiver 1986; Candy 1989). Bailey
and Ware (1983) incorporate thinning effects
in Model 2 with the constraint that op = 1.
The yield model in this case is a simple log/
reciprocal model which is often not flexible
enough to model yield or increment, which is
the reason Clutter et al. (1983) introduced the

extra parameter, 0. Bailey and Ware (1983)
define a thinning variable, R, as the ratio of the
quadratic mean DBH of stems removed, Dy, to
the quadratic mean DBH of all stems prior to

D
thinning, D, , (Le. R, = =% ). Here, thinnin
24 ) g

b
was incorporated in (2), while maintaining
path invariance according to Model 3.
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Figure 2. Residuals for MDH versus (a) age and (b) fitted values.
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For unthinned stands or ages prior to
thinning in thinned stands, P, and T, are each
set to zero. After thinning, P; and T, remain
fixed at their thinning-age values for all later
projection periods unless another thinning is
applied, in which case they are changed to
this later thinning’s values (note that the data
used here involved, at most, one thinning).
As described earlier, the age at thinning
should start a new projection period with
T,=T, and B, set to the retained basal area.

It can be seen that these thinning terms affect
growth by modifying the age terms in (2).
Depending on the age and intensity of
thinning and the sign and magnitude of the
parameters ¢, o4 and oz, the 'age shift’ may
be to an earlier or later age. Since growth rate
depends on age, as in (2), then relative growth
may be increased or decreased by thinning,
Since Model 3 is purely an empirical
construct, expression of the effect of thinning
in relative basal area growth depends largely
on the available thinning data. Note that
Model 3 no longer has a state-space
representation since, given T, > T, future
values of the state variable, stand basal area,
do not depend solely on the state variables
(i.e. atage T)).

Model fitting

The response variable in the fit of Model 3

was In(B,). Since the calibration data
mvolved repeat measurements of sample
growth/experimental plots, a mixed model
was constructed from (3) by adding random
plot effects to the linear age and site index
components of the model. At the same
time, to facilitate the fitting procedure, the
parameters in the linear site index term,

%o 4 S, were reparameterised as & + ;5.
The nonlinear mixed model (NLMM) is then
given by Model 4,

The random effects have zero expected
values, and variances and covariances as
follows:

Var(by) = i, Var(by) = 62, Cov(by;, by;) = 0.

It was found that iterative weights given by

oy -2
w; = 1—(&J
i

were required in the fit, since residuals given
A 1

by {]ﬂ(Bzf) - Ln(Bzi)}w,? showed no evidence

of increasing variance when plotted against

LAY
w,;?, In{B,;}—In(B};), or T, — T}, which was

not the case with raw residuals,
A
In(B,;}— In(B,;). The variance of &; was

2 .-1
therefore assumed to be ¢ w; .

The fitting procedure involved linearising (4)
using a first-order Taylor series expansion
and iteratively fitting the linear mixed modet
of the form given by Model 5.

In (5), working vectors and matrices, with the
exception of e, are functions of the current
iteration’s estimate of the fixed effects, o,
and observed covariates, and are therefore
updated at each iteration (see Appendix 1).

If the random effects estimates are included in
the calculation of X and Z, the fitted model is
called a 'subject-specific' (55) model. If the 58
fixed-effect estimates are used to predict the
average value of the response (In(B,;) here)
given the covariates in a GLMM or NLMM,
the predictions will be biased (Zeger et al.
1988; Lindstrom and Bates 1990), To
overcome this problem, Breslow and Clayton
(1993) proposed the 'marginal model' for
GLMMs. The corresponding marginal model
in this case is obtained by excluding the
random-effects estimates from the calculation
of X and Z while using (5) to obtain the
marginal variance-covariance matrix for y.
This 'marginal model' is the model described
below. The fitting algorithm is given in detail
in Appendix 1.

Table 3 gives the parameter estimates and
their standard errors for Model 3, fitted using
(4) and (5), along with some statistics from
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Table 3. Paranteter estimates for the stand basal area projection model.

Paramefer o o (12} U5 oy Os
Estimate 3.53173 0.03442 0.85751 6.78663 1.69372 -0.09569
Standard error 0.27420 0.60880 0.07036 1.18531 0.83092 0.02952
Fit statistics Valuefestimale Standard error Effective df
RSS{In{Bs; )} 5.330 - 592.00
&2 0.1222 0.0283 158.55
o3 3.3931 1.0230 78.23
&2 0.2714 0.0204 355.27

Model 4

Mg = Ty + 03By + 0y Py Ty; + o5 Py TS + by,

Moi = Toj + Caly + oy PyTyy + a5 PyTyS; + by

o : (23
In(By;) = (ﬂ) In(By;) + (o + 05; +by; R1- (—’lLJ + &y n
i N2i

where the i = 1,.., n subscript is introduced to represent the ith plot in a total

of n plots and by; and by; are random plot effects with n elements each and

£,; is a random error independent of the random effects.

Model 5

y=Xo+Zb+e

(5)

where b is a stacked vector which contains the random effects and y, X, Z and
e are working response vector, working fixed effect design matrix, working
random effect design matrix, and within-plot random error vector respectively

(Candy 1997},

the fit. The dataset used in the fit consisted of
598 measurement pairs which excluded pairs
for which Tj; was less than three years. These
younger measurements were excluded since
it was considered that they would be too
highly dependent on vagaries of plantation

establishment and would not necessarily
reflect the site’s growth potential. Also, the
measurements after thinning of a single plot
which was thinned from 388 stems/ha to 200
stems/ha at age 29 were excluded from the
fit since these data points have very high
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leverage on the parameter estimates in the
thinning terms if included, and thinning at
such a late age is not a serious proposition.
Figure 4 shows marginal (i.e. excluding
random effects) raw residuals,

A L
{In(Bz,-) - ln(Bz,-)}, versus each of w,;? and

In(B,;). Figure 5a shows standardised
marginal residuals

A A "2 A
{En(sz) - h}(BZi)}[Var{M(BZi)}} versus w;?
and Figure 5b shows the same residuals
versus In(B,;), where

Fas
Var{ln(B,)} = 61z + 6iz3 +w™'6%,

1
z, =1 %, and

PR 2 ~
- s, — - ~
7 =a2($J e {in(By) - Gy + 68},
2

Figure 5¢ shows conditional (i.e, including
random effects obtained from the fit of the 55
model) raw residuals,

{II\(BZ,-)— In(B,; | l;l, l;z)}, and Figure 5d shows

041 (@
0.3

X

0.2
0.1+

0.0+

Raw residuals
XXX X

=014

~0.2 1

~0.3

conditional standardised residuals,
A A A 1 _l
{h}(ng) - In(By; lbl,bz)}ﬁ)f versus ; *,

Figures 4, 5a and 5b show that the weighted
residuals appear to have homogeneous
variances while the raw residuals do not. The
conditional residuals in Figures 5¢ and 5d
indicate that although weighting has
improved the homogeneity of variances it has
possibly overcorrected for the trend for small
variances (or spread of points) with small

I

w,?. However, it should noted that there are

far more data points for small w;% so at these
values the greater spread of residuals could
partly reflect the greater sample size. Figure 6
shows estimated random effects, l;l versus I;z.

[t can be seen from Figure 6 that these random
effects are uncorrelated. Figure 7 shows
observed and predicted trajectories for stand
basal area for unthinned plots which have had
more than four measurements after age three.
Predicted trajectories have been adjusted for
back-transformation bias {see below).

The marginal variance of In(B,;) is given
approximately by o7zf +03z; +w™'o?. The

relative importance of the three variance

04 (b}

Raw residuals
o o) = =)
5 =~ R

!
e
L

3 3
o o
[ o)

1 1

|
=
>

(=3

-
Lt
-~

Fitted values

Figure 4. Basal area raw residuals versus (a) w Y/ ? and (b) Sfitted values.
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components was assessed by calculating

their mean {over all values of z|, z,, w”l)
percentage contribution to the total variance.
These percentages were 20.2% for 0'12212 ,
34.8% for 02z%, and 45.0% for w™'c”. The
mean value for the marginal variance was 0.02.

There is a well-known bias in predictions
when back-transforming from the logarithmic
scale, which is required for the models here
which were fitted with In{B,;) as the response
variable. Adjustments for back-

(a)

X X

XA R K

Weighted residuals

Raw conditional residuals

transformation bias for the logarithmic
transformation have been proposed in the
case of single error models (Flewelling and
Pienaar 1981), with the simplest and most
commonly used adjustment obtained by
multiplying the back-transformed basal area

by the term exp(0.50%), where o’ is the
residual mean square from regression.
Appendix 2 gives a derivation for the
analagous adjustment for the mixed model
described above, taking into account the
weights w;. The adjusted prediction of stand
basal area is derived as Model 6.

(b)

Weighted residuals

201 {d)

Weighted conditional residuals

T

.G T T 1
00 of 02 03 04

w-!fZ

Figure 5. Basal area weighted marginal residuals versus (a) w'? and (b) In(By), and conditional raw (c) and

weighted (d) residuals versus wi/
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The terms 6375 and @ '67 in (6) are largely
h

dependent on the ratio 7 which, for

unthinned stands, is the 1'2at10 of age of
prediction to start age for the projection
period. For example, for an unthinned stand
with T, =10, T, = 11, S = 30, B, = 35.13, the
adjustment is negligible at 1.0013 (i.e. 0.13%)
but, projecting to age 30, the adjustment is
1.0765 (i.e. 7.65%). If the unadjusted
prediction is used and the distribution of By,
given By, T,, Ty and S, is lognormal, ignoring
random effects, then this prediction is a
consistent estimate of the median (Gregoire
et al. 1995). Alternatively, the adjusted value
gives the mean. The unadjusted prediction
may be preferable if a conservative approach
is adopted. This is, however, only one of a
number of issues to consider when predicting
stand basal area since the models developed
here are fitted to plot data from a wide range
of geographical locations, with ages at plot
measurement confounded with location.
Therefore, the mean of predictions for a more
restricted range of plot locations than the
range of the calibration data will have some
degree of bias.

An approximate variance for the unadjusted

prediction, B,, ignoring estimation error in

fixed effect parameters, is given by Model 7,
0.8
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Figure 6, Estimated random plot effect .{;1 versus f)z Sfor
stand basal area NLMM.

Model 6
B, = exp{o.s(&%zf +6325 +1 162 )}1‘;2 (6)

where B, = exp{f[}, i represents the

marginal (i.e. excluding random effect terms)

fitted values from (4} given by In(By;).

Model 7

Var{ﬁg Y= (0.12212 + o‘%z% +wig? )}_?3% (7)
Model 8

In(B10) = fy + 157! (8

Using the examples above to demonstrate
back-transformation bias, for the age 11
prediction, the standard error derived from (7)
as a percentage of the predicted basal area
was 5.1%, while for the prediction at age 30

it was 38.4%. When Model 4 was fitted using
ordinary least squares without weighting,

the residual mean square was estimated

as & =0.00896. This gives a constant
percentage standard error of 9.5%. Clearly,
this underestimates the standard error of
predictions since the estimate of o’ is biased
due to the repeated measurement nature of
the data, and no account is taken of the
increasing error variance with increasing
length of projection period. The mixed model
approach with iterative weights gives more
realistic error variances.

To demonstrate the effect on the fit of Model 3
of the thinning terms, the RSS for the
following three models and (i) the complete
dataset, (ii) measurements which were not
preceded by a thinning, and (iii) measurements
which were preceded by a thinning are given
in Table 4. The models were: (a) Model 3
fitted to all the data, (b) Model 2 fitted to all the
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Figure 7. Observed (o) and predicted (p) basal area trajectories for unthinned plots
with more than four measwremenls after age 3.

data, and {c) Model 2 fitted to the data defined
by (ii) above. Clearly, Model 3 is superior for
thinned plots and for all plots combined, while
still giving as good a fit for unthinned plots
as Model 2 fitted to dataset (ii). When the
extended version of Bailey and Ware’s (1983)

model (i.e. including the @, parameter) given by

In(B,) = (%—} 2 In(B,)+{atg + als){l —(%L] 2 }
2 2

X 11 1
oo

where

X,=1-R; R, >0
=0; R, =0

was fitted to dataset (i), the fit was

considerably worse than that of Model 3, with .

a residual sum of squares of 6.976 compared
to 5.330 for Model 3 (i.e. fitted as Model 4).

Farlier it was mentioned that Model 2 has
the property that relative basal area growth,

In{B,)— In(By), is negative if, after
reparameterisation, In{(B,)> o + o;S. This is
an undesirable property since, in the absence

of severe mortality, net stand basal area
generally increases from one year to the

next. However, if a low site index of 20 m

is assumed and parameter estimates from
Table 3 used, then By must be greater than

68 m*/ha for predicted growth to be negative.
In practice, for commercial regimes, it is
unlikely that projecting from such high initial
basal areas would be required.

Stand basal area at age ten

The typical use of stand projection models

is to 'grow-on' inventory plots established

in existing stands that are old enough for
inventory to reliably represent the growth
potential of the sites. Another use of

these models is the growth simulation

of hypothetical stands. To carry out these
simulations, a starting age and corresponding
MDH {or site index} and stand basal area are
required. Stands can be grown forwards or
backwards from this starting age. To make this
task possible given only site index, a model has
been constructed to predict stand basal area at
age 10 (B10) for unthinned stands with stocking
in the range 900 to 1100 stems/ha from a
single input of site index. The data used to fit
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Figure 8. (a} Basal area at age 10 (B10) versus sife index (S) and (b} yield curves for site indices bebween

20 m and 36 1 with initial basal area predicted from {a).

Table 4. Residual sum of squares for In(B,,) including or excluding thinning terms,

Number of
Data set measurements Model (a) Model (b} Model (c)
Unthinned (ii) 435 4.131 5.571 4117
Thinned (jii} 163 1.2m 1.591 9.028
All data (i) 598 5.330 7.162 13.145

this model were obtained by selecting
measurements for which the stocking was in
the required range and no prior thinning had
occurred. Then using Model 4 with parameter
estimates given in Table 3, the basal area was
predicted at age 10. This basal area was then
regressed on site index using Model 8.

Parameter estimates, standard errors, and fit
statistics including the residual mean square
(RMS} are given in Table 5. Figure 8a shows
the data and fitted model. Figure 8b shows
yield curves for site indices of 20, 24, 28§, 32
and 36 m derived by (i} obtaining initial basal
area at age 10 using Model 8, (ii) projecting
MDH using Model 1, (iii) projecting stand
basal area using Model 4 and equation (6)
for ages ranging from 4 to 36 years, and (iv)
predicting stand volume from MDH and
stand basal area as described below.

Stand volume

Stand volume, V, was defined earlier as the
total of individual-tree entire-stem volumes
{i.e. volume from ground to tip). The
Schumacher model (Model 9) was used to
predict V, given measured MDH (H) and
stand basal area (B} at any stand age.

Candy (1989) fitted the GLM version of this
model (i.e. ignoring random plot effects). The
marginal variance is approximately {Breslow

and Clayton 1993) Var(V) = (6 +af) V2.

Model 9 was fitted as a GLMM using the
Genstat GLMM procedure (Payne ef al. 1993)
with log link function, conditional gamma
error structure, and normally distributed
rantom plot effects added to the linear
predictor. The marginal method of Breslow
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Model 9

V =exp{fy + By In(H)+ B In(B}+ b} + &

(9)

where b is a random plot effect with variance of and € is an independent within-plot error with

conditional variance Var(V | b) = ¢Vj? where V}, is the conditional expectation of V (i.e. the right

hand side of (9) excluding the within-plot error) and ¢ is a dispersion parameter.

Model 10

T,
My = N,{l— exp[— J.f)(t)dr}}+ £
T

(10}

where M, is the mortality on the plot between ages Tj and T, Ny is the number of live trees

on the plot at age Ty, and n(t) is the hazard function given by

1(t) = exp(Bp + BrS+ Pat + Bat”)

and ¢is a binomial error conditional on Ny.

Table 5. Basal avea niodel parameter estismates and fit
statistics at age 10.

Parameter B B

4.8432 -38.52
0.0950 247

Estimate
Standard error

Fit statistics Valuelestimate

RMS 0.0219
R? 0.735

and Clayton (1993) was used in the fit. Table 6
gives the parameter estimates and some fit
statistics. Figure 9a shows raw residuals

and Figure 9b shows conditional Pearson

residuals versus conditional fitted values, VB’

in each case. Figure 10a shows raw marginal
residuals versus marginal fitted values, V;_ ..

Figure 10b shows the random effects
expressed as percentage adjustments to the

marginal fitted values versus plot index.
Conditional raw residuals are the difference
between observed and conditional fitted
values (i.e. random effects estimates included)
while, for marginal residuals, the conditional
fitted values are replaced by marginal values
(i.e. random effects estimates excluded or

set to zero). Pearson (conditional) residuals
(McCullagh and Nelder 1989) are simply the
raw conditional residuals divided by their
standard deviation excluding the dispersion
parameter so that here the Pearson residual is

(V - 1}5 )I}E_ ! It can be seen from Figure 10b that

1

the random plot effects adjust the marginal
fitted values by mostly between +10%.

Stand mortality

The proportional hazards model (Model 10)
of Candy (1989) was fitted here. Candy
(1989) fitted this model as a GEM with
binomial error for M, conditional on Ny,
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Figure 10. Stand volume (a) raw marginal residuals and (b) random plot effects expressed as a per cent

deviation from the marginal fitted value.

complementary log-log link, linear predictor

By +BS+ 8,71, + ﬁajﬁ

where Tm = (TZ +T1)/2;

and an offset given by In{T, -T;). Candy
(1989) applied prior weights to scale the
binomial error variance (Wedderburn 1974)
but this was not done here., Instead, Model 10

was fitted as a GLMM with conditional
binomial error and a random plot effect, b,
within the linear predictor so the hazard
function is now

My () = exp(By + 15+ Byt + Bat” + b

with variance of b given by of. The Genstat
GLMM procedure was used to fit this model
using the marginal method of Breslow and
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Table 6. Stand-volime model parmineter estimates and fit statistics.

Parameter B By By
Estimate -0.4885 0.8252 0.9682
Standard error 0.0147 £.0088 0.0047
Fit statistics Value/festimmate Standard error Effective df
RSS{V} 20369 - 733.00
Var(by) 0.002560 0.000266 222.06

) 0.000573 0.000036 508.94

Table 7. Mortality volume model parameter estimates and fit statistics.

Parameter Bo B B
Estimate -8.600 0.1124 0.1487 -0.0067
Standard error 0.846 0.0232 0.1098 0.0055
Fit statistics Valuelestimate Standard error Effective df
Residual deviance - 724.00

of 0.938 0.282 176.39

fol 1.487 0.090 547.61

Clayton {1993). Table 7 gives the parameter
estimates and some fit statistics. Figure 11a
shows the stocking trajectories for unthinned
plots used in the model fit. (Note that some
slight increases in stocking are due to the
ingrowth of one of a multi-leader stem to
measureable size; that is, height greater than
1.3 m). Figure 11b shows predicted stocking
curves for unthinned stands with 1803, 1100
and 800 initial stems/ha at age three for each
of site indices 20 and 30 m.

It can be seen from Table 7 that the standard
errors for the parameter estimates of f3,

and f; indicate that these terms may not be
significant. However, these terms need to be
retained since we know that the mortality rate
is not constant with increasing age but, within
a normal rotation (say less than 50 years),
increases with age and then declines when the

stand 'stabilises’ (Candy 1989). The parameter
estimates are of a similar magnitude to those
obtained by Candy (1989) for Pinus radiata.
The main difference is the smaller magnitude
for B, here which means that the stocking
curves tend to reach a 'stable-stand’
asymptotic stocking earlier. The data
available to this study are fairly limited in
range of ages and stockings compared to
those in Candy (1989) so refinement of this
model is a high priority when sufficient later
measurements of plots are available in perhaps
10 to 15 years time. Until that time, this
model should be used with more caution than
the other models developed here. Fortunately,
density-dependent mortality is quite smali
for economically favourable regimes (Candy
and Gerrand 1997) involving initial stockings
below 1100 stems/ha, possibly combined

with early non-commercial thinning or later

Tasforests Vol. 9

183 December 1897




(a)

Stocking (stems/ha

Age (years)

2000 - (b)

$500 - 30

T
§ 1250
:%’ moﬂ_% %g
2
g BT = ¥
pe
W 500
2501
U T 3 1
10 0 30
Age (years)

Figure 11. Stocking versus age. (a} Observed trajectories and (b) predicted trajeciories for site indices of 20 and 30 m

and initinl stockings at age 3,

{e.g. age 10 to 15) commercial thinning where
stocking is reduced to a range of between 100
and 400 stems/ha.

Individual-tree basal area increment

To allow calculation of product assortments
at commercial thinning or clearfall ages,
individual-tree DBH or a distribution of
DBHs is required at the projection age. One
approach is to predict a DBH distribution at
the projection age which, when aggregated,
gives the projected stand basal area {Garcia
1984; Knoebel ef al. 1986; Hyink and Moser
1983; Candy 1989). Yield scheduling software,
in this case, does not need to retain individual-
tree DBIIs measured at inventory once stand
basal area and volume have been calculated
at the inventory age. Models which require
the list of DBHs at inventory and apportion
stand basal area increment directly to
individual trees to give projected DBH were
used by Campbell ef al. (1979), McMullan
(1979) and Woollons and Hayward (1985}.
There can be advantages in retaining the
individual-tree attributes measured at
inventory to later projection ages while
projecting individual-tree DBH. As well as
DBH, quality information such as pruned
height, and defects such as fork height and

‘top-outs' can be retained and thus give more
accurate numbers and average dimensions
of log products than those obtained from the
DBH distribution approach. If a pre-harvest
inventory is carried out and the projection
period is therefore limited to say one to five
years, then quality information such as
branch size can be incorporated into log
assortments if this information is retained.
For these reasons, a DBH distribution model
as, for example, in Garcia (1984) or Candy
{1989) was not constructed. Instead, an
individual-tree basal area increment model
based on that of McMullan (1979) was
constructed (Model 11). This modelis a
modification of McMullan’s model which
uses an algebraic constraint to ensure the
projected DBHs reproduce the projected
stand basal area (P. West pers. comun.).

This constraint was incorporated into the
fitting procedure with observed rather than
projected B, used in the constraint.

The constants in Model 11 are ¢ and Dy,
where ¢ is 'constrained out’ as described
betow and D, is the minimum DBH below
which trees are assumed to have zero
increment., Model 11 without the constraint

on ¢ is simply a linear regression of dG,, on
D where ¢ is the slope and Dy is the x-axis
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intercept. To ensure that the projected DBHs
given by 152,\,, where

) 7 o
Dy = 100\;’;((31:\- +Gy)

reproduce the stand basal area, the constraint,
Equation 12, is imposed on (11), where 1 is
the number of trees for which Dy > I}y, This
means that the parameters to be estimated
are those required to predict ;. In the
application of (11) and (12), since B, is not

Model 11

oGy =e(Dy ~Dg) 5 Dy > Dy
=0 ;le SDD

known, its predicted value, ff;,_, obtained from
Model 4 is used. The relationship between
diameter increment and initial diameter from
(11) is shown by Model 13, which produces a
relationship between dD,; and D, above

D, which is concave down. This gives
conservative growth for the largest trees in
the stand. In the author’s experience, with
other individual-tree models for Pinus radiata
for which this relationship is concave up,

the largest trees at inventory become
unreasonably large by projected rotation ages.

(11)

where if Gy is the basal area ( m”) of the kth tree on the piot at the second

measurement in the pair, and similarly Gy is the basal area of the same tree at the

first measurement in the pair with DBH (cm) of Dy, then the individual-tree basal

area increment is dGap = Gy — Gy

Equation 12
# -1
c=(B;—5B )(Zk"zl Dy “”090)

Model 13
1

4 2
oDy = [ka “}";ank:' - Dy

Model 14

~
Diaiy = exp(By + B1Qy; + Ba23: + Py Hy; + By Hi; + BsNy +0;)+&

(12)

1»

(14)

where (y; is the quadratic mean DBIH given by

4
Qi = 100\[ —By;

i

b; is a random plot effect with variance of and € is a gamma error.
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Figure 12, Observed and plot-specific predicted DBH increment for a pair of nieasurements from (a) an unthinned
plot and (b} a thinned plot.

Table 8. Stand model for D2

Parameter By B By B By Bs
Estimate -1.1460 0.1530 -0.00180 0.2956 -0.00533 0.000377
Standard error 0.1737 0.0236 0.00035 0.0305 0.00061 0.000091
Fit statistics Valuefestimnte Standard error Effective df
Residual deviance 99.43 - 476.00

of 0.1808 0.0253 151.75

¢ 0.0842 0.0066 32425
Figures 12a and 12b show the observed and estimated is D§ rather than Dy. Model 11
predicted dDy;, from Model 13, versus Dy, then simply becomes

with Dy estimated from (11) with constraint 5

(12) for a measurement pair for an unthinned oGy =c(Dy =Dy} 5 Dy > Dy

plot (a), and a thinned plot (b}. =0,; D, £D,.

. . . Ead A2
A model to predict Dy was obtained by first This parameterisation ensures that D, = \‘(DD}

estimating Dy using individual-tree basal area is positive. Also it has been found (P. West,
increments for corresponding plots and

measurement pairs used in the fit of the pers. comm.) that D has good statistical
stand basal area model. The model was properties, with low bias and low values of
reparameterised so that the parameter to be the Lowry-Morton statistic (Ratkowsky 1983).
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deviations from the marginal mean for D3

The constraint {12) was imposed in the fitting
procedure. The estimate of D§ indexed by
plot i and measurement 2 in the pair was
then modelled as a function of stand variables
using the GLMM given by Model 14

The marginal form of the model was fitted
using the Genstat GLMM procedure. Table 8

gives the parameter estimates for (14), their
standard errors and fit statistics. Figure 13a
shows raw conditional residuals and Figure 13b
shows Pearson conditional residuals versus

conditional fitted values for D?. Figure 14a
shows raw marginal residuals versus
marginal fitted values while Figure 14b shows
the random effects expressed as percentage
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adjustments to the marginat fitted values
versus plot index. Itis clear from the above
figures that although Model 14 is unbiased
there is substantial between-plot (Figure 14b)
and within-plot (Figure 13a) variability about

predicted values of Dg compared to the stand
volume model (Figures 9 and 10).

Tree-height regression parameter models

The final two models in the suite of models
required to project yields and predict product
assortments for E. nifens plantations are
maodels of the parameters of the tree height

to DBH regression. The simple log-reciprocal
model of tree height as a function of DBH was
fitted to each plot and measurement pair. The
model for tree height, Hr, is given by

Hyp =exp{f; - ﬁlDJ:l)

where Hypy is the total height of the kth tree
on the plot.

In a second stage, a mixed model was fitted
to each of an exponential function of the
estimated values of §, given by Model 15,
and the estimated values of 8, given by
Model 16,

10.0+ (a)
7.5
5.0
2.5
0.0

—254

~5.0

Raw conditional residuals

-7.5+4

-10.0 T 7 T

Conditional fitted vatue exp(B,|b)

Models 15 and 16 were not fitted jointly so
that any correlations between random effects
bg; and by and between within-plot errors &
and g are assumed to be zero. The fitting
methodology could be improved by
incorporating these correlations but this is
not straightforward, requiring a multivariate
mixed model approach. Models 15 and 16
were each fitted using Genstat's GLMM

procedure with response variables exp([;'o)

and f; with corresponding identity and log
links respectively. Tables 9 and 10 give the
parameter estimates for Models 15 and 16
respectively, along with their standard errors,
and fit statistics. Figure 15a shows raw
conditional residuals and Figure 15b shows
Pearson conditional residuals versus

conditional fitted values for exp(f;).

Figure 16a shows raw marginal residuals
versus marginal fitted values while

Figure 16b shows the random effects
estimates versus plot index. Figure 17a

shows raw conditional residuals and Figure 17b
shows Pearson conditional residuals versus
conditional fitted values for f;. Figure 18a
shows raw marginal residuals versus
marginal fitted values while Figure 18b shows
the random effects expressed as percentage
adjustments to the marginal fitted values
versus plot index. From Figures 15 to 18, it

0.4+ (&)
0.3
0.2
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-0.2

0.3

0.4 T T T

Conditionat fitted vaiue exp(f|b)

Figure 15. Conditional residunls for the tree height regression intercept parameter, By (a) raw, (b) Pearson residuals,
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Table 9. Stand model for

exp(fo).

Parameter Boo B Bo:z
Estimate -3.8930 1.4030 -0.00211
Standard error 0.8854 0.0373 0.00059
Fif statistics Valuefestimate  Standnrd ervor Effective df
Residual deviance 36.55 - 723.00
os 21.3091 2.2707 213.59
&g 0.0181 0.0011 509.41
Table 10. Stand model for .
Parameter Bio B B2 Pia Big
Estimate 1.3650 0.0100 0.07787 -0.0612 -0.00029
Standard error 0.0845 0.0060 0.60966 0.0142 0.00006
Fit statistics Valuelestimate Standard error Effective df
Residual deviance 157.5 - 716.00
0'12 (0.1908 0.0212 213.54
ol 0.0690 0.0044 502.46
Model 15
exp(Ba) = Boo + BorHai + BoaN1i +bo; + &0 (15)
Model 16
Br = exp(Big + B1Qu; + PraHui + PraTus + PraNyi +b1 )+ &1 (16)

where i represents the plot (the subscript for measurement is not shown), by;

and by; are random plot effects with variances ¢ and g? respectively, and &

and g, are within-plot errors each assumed to be gamma distributed with

dispersion parameters ¢y and ¢; respectively.
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Figure 16. (a) Raw marginal residuals and (b) random plot effects estimates for height regression intercept pavameter By .

can be seen that, as with the model of D,

there is a high degree of prediction error for
both second-stage models, (15) and (16). This
can be overcome to some degree by measur-
ing a sample of tree heights as part of routine
inventory, using temporary plots. Using the
regression estimates of exp{f%;) and 5, from
this sample of tree heights and DBHs, an
estimate of the random plot effect can be
obtained for each of Models 15 and 16 by
solving for by and b;. For projections at ages
after inventory, these random plot effects can
be used to adjust marginal model predictions
using (15) and (16).

Discussion

The most important limitation of the models
developed above is the lack of data at older
ages. For sawlog regimes with rotation ages
up to around 45 years (Candy and Gerrand
1997), the restricted range of ages shown in
Figure 1 means that predicted trajectories
over age 20 are extrapolations of the data and
should be used with caution. As well as this
limitation, to provide a dataset which was
sufficient for growth modelling, plot data from
a wide geographic range of sites in Tasmania
and New Zealand were combined. Differences
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X
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=
501 2); %
Q254 ;§« x &x
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£ s Z %@%i
5 é &gggkxx
o 50 %x
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Plot index

in growth trajectories between geographic
regions have not been modelled explicity
here. However, when the models are applied
in their projection form, some of this regional
variation will be incorporated via the initial
conditions obtained from inventory. Given
these conditions, models of the type described
here assume predicted growth trajectories

are unbiased irrespective of establishment
techniques, site atiributes, or genetic stock.
These assumptions can be tested using regional
data, while a revision of the models should be
carried out when the permanent plots used in
this study have had further measurements over
the next, say, 10 to 15 years. Also, a project to
test the New Zealand taper model used here,
and adjust it if necessary, for different regions
and regimes is a high priority.

Projecting stand basal area accurately is the
most important single determinant of the
overall accuracy of the output of primary
interest, stand volume, given data such as
that used here. Figure 7 demonstrates a key
property of the stand basal area projection
model; that is, the sensitivity of projections to
initial basal area for the projection period, B;.
For example, where the initial basal area is
high relative to stands of the same age at the
start of the pericd, then projected growth
will be high while the actual growth rate may
decline. Conversely, stands with relatively
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Figure 17. Conditional residials for the tree height regression slope parameter, fy (a) raw and (b)) Pearson residunls.
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Figure 18. (a) Raw marginal residuals and (b) random plot effects estimates expressed as per cent deviations from the
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low initial basal area will produce low
projected growth. Considering unthinned
stands for simplicity, initial basal area at a
given age is used implicitly in the model as a
measure of site quality, given initial stocking
is adequate to produce full site occupancy at
a reasonably young age (e.g. by age five to
eight). This is in addition to the effect of site

index in the model and is the dominant effect
on stand basal area projections. Considering
again Figure 7, if the initial basal area was set
to a later age than the first measurement of
the plot after age three, then projections

will more accurately reflect the actual basal
area trajectory from initial age. The general
principle in the state-space approach (Garcia
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1994) is that the state variables soley
determine future states; however, if stand
basal area does not reflect the site’s
productivity, taking thinning into account,
then predicted and realised stand basal area
trajectories may diverge substantiaily over
long projection periods.

There are many reasons why stand basal
area may not adequately reflect the site’s
productivity given adequate stocking. These
include underestimation of site productivity
due to poor establishment, episodes of
insect attack, and atypically poor growing
conditions for the site. Conversely,
overestimation can occur because of
atypically good early growing conditions
such as short-term improvement of soil
nufrients by fertilisation or because a site
factor (e.g. shallow soil depth) does not limit
growth until later in the rotation.

One way to improve the situation is to delay
inventory as long as possible without
limiting its utility for yield scheduling. If an
inventory is not carried out at any scheduled
thinning, inventory should be delayed until
at least three to five years after thinning to
allow stand basal area at this time to have
incorporated any thinning response.
Projections for individual inventory plots will
always be subject to large errors; for example,
an error of approximately 40% of projected
basal area for the age 10 to 30 projection
period was given earhier. However, if the
model projections are unbiased given inputs,
averaging projections for a sample of
inventory plots can produce estimates at

the total resource or regional level which are
relatively accurate given a sufficiently large
sample of inventory plots.

Simulations of hypothetical stands for
silvicultural regime evaluation can be carried
out using the models if an estimate of site
index is available. The difficulty in this case
is that site index can only be estimated reliably
for existing stands using inventory plots. This
problem can be alleviated by development
of a hybrid empirical /mechanistic' model

which can predict site index from a site
productivity measure based on GIS-captured
data (where possible} independent of current
land-use at a given site. To allow evaluation
of financial returns from future plantations of
E. nitens, development of such a model is a
high priority.

Mixed model approaches to model fitting
and testing have been used extensively in this
study. For all the models where random plot
effects were incorporated, these effects were
a highly significant source of variation in
addition to the between measurement (within-
plot) source of random error. Taking into
account the variation due to random plot
effects has allowed more rigorous hypothesis
tests for model selection, more accurate
estimation of prediction error variances,

and appropriate adjustment for back-
transformation bias in the case of the stand
basal area projection: model. Further work

is required to determine if the assumed
independent conditional error structure

is adequate. For example, a continuous
autoregressive error structure conditional

on random plot effects could be employed
(Gregoire ef al. 1995). This has not been done to
the author’s knowledge for a projection model.

Acknowledgements

The co-operation of the organisations that
contributed data to this project is greatly
appreciated. Thanks are due in particular to
Heather McKenzie and Wai Mason (Forest
Research Institute, Rotorua, New Zealand),
Bernard Walker, Brett Miller, and Jeremy
Wilson (North Forests Burnie}, Dr Chris
Beadle and Charles Turnbull (retired) (CSIRO
Bivision of Forestry), and Adam Gerrand
{Forestry Tasmania). Dr Humphrey Elliott
and Dr Timothy Gregoire kindly reviewed
the manuscript and their commments are
appreciated. A special vote of thanks to
Wengui Su for his help in preparing the
data for modelling. This project was jointly
funded by the Intensification of Forest
Management Project and Forestry Tasmania.

Tasforests Vol. 9

192 December 1997




References

Bailey, R.L. and Ware, K.D. (1983). Compatible basal area growth and yield model for thinned and
unthinned stands. Canadian Journal of Forest Research 13: 563-571.

Beadle, C.L., McLeod, D.E,, Turnbull, C.R.A., Ratkowsky, D.A. and McLeod, R. (1989). Juvenile/total foliage
ratios in Eucalyptus nitens and the growth of stands and individual trees. Trees 3: 117-124.

Beadle, C.L. and Turnbull, CR.A. (1986). Leaf and branch development in two contrasting species of
Eucalypius in relation to early growth and biomass production. In: Crown and Canopy Structure in
Relation to Productivify (eds T. Fujimori and D. Whitehead), pp. 263-283. Forestry and Forest Products
Research Institute, Ibaraki, Japan.

Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear mixed models. Journal
of the American Statistical Association 88: 9-25.

Campbell, R.G., Perguson, 1.5. and Opie, J.E. (1979). Simulating growth and yield of mountain ash stands:
a deterministic model. Australian Forest Resenrch 9: 189-202.Candy, 5.G. (1989). Growth and yield
models for Pinus radiate in Tasmania. New Zealand Journal of Forestry Science 19: 112-133,

Candy, 5.G. (1997). Estimation in forest yield models using composite link functions with random effects.
Biometrics 53: 146-160,

Candy, 5.G. and Gerrand, A. (1997). Comparison of financial returns from sawlog regimes for Eucalyptus
nitens plantations in Tasmania. Tasforests 9: 35-50.

Clutter, ].L., Fortson, ].C,, Pienaar, L.V,, Brister, G.H. and Bailey, R.L. (1983). Timber Management, a
Quantitative Approach. John Wiley and Sons, New York.

Davidian, M. and Gallant, A.R. (1993). The nonlinear mixed effects model with a smooth random effects
density. Biometrika 80: 475-488.

Engel, B. and Keen, A. (1994). A simple approach for the analysis of generalized linear mixed models.
Statistica Neerlandica 48: 1--22.

Flewelling, ] W. and Pienaar, L.V. (1981). Multiplicative regression with lognormal errors. Forest Science 27
281-289.

Garcia, O, (1984). New class of growth models for even-aged stands: Pinus radigta in Golden Downs forest.
New Zealand Journal of Forest Research 13: 267-270.

Garcia, O. (1994). The state-space approach in growth modelling. Canadian Journal of Forest Research 24:
1894-1903.

Genstat 5 Committee (1993). Gensiat 5 Refererice Manal, Clarendon Press, Oxford.

Gerrand A.M., Medhurst, ].L. and Neilsen, W.A. (1997). Thinning and pruning eucalypt plantations for
sawlog production in Tasmania. Tasforests 9: 15-34.

Goulding, CJ. (1986). Measurement of tree crops. In: Forestry Handbook (ed. H. Levack), pp. 80-81. New
Zealand Institute of Foresters, Wellington North, New Zealand.

Gregoire, T.G., Schabenberger, O. and Barrett, ]I (1995). Modelling irregularly spaced, unbalanced,
longitudinal data from permanent plot measurements, Canadian Journal of Forest Research 25: 137-156.

Hallam, P.M., Reid, ].B. and Beadle, C.L. {1989). Frost hardiness of six potential plantation Encalyptus
species. Canadian Journal of Forest Research 19: 1235-1239,

Hyink, D.M. and Moser, J.W. Jr {1983). A generalized framework for projecting forest yield and stand
structure using diameter distributions. Forest Science 29: 85-95,

Knoebel, B.R., Burkhart, H.E. and Beck, D.E. (1986). A growth and yield model for thinned stands of
yellow-poplar. Forest Science Monograph 27.

Lindstrom, M.]. and Bates, D.M. (1990). Nonlinear mixed effects models for repeated measures data.
Biometrics 46: 673-687.

Macalister, . (1995). 'Gums gain'. New Zealand Forestry Industries Journal 12: 12-13.

McCullagh, P. and Nelder, .A. (1989). Generalized Linear Models (2nd ed.). Chapman and Hall, London.

McGilchrist, C.A. (1994). Estimation in generalized mixed models. Journal of the Royal Statistical Society B
56: 61-69.

McMullan, M]. (1979). Overall measurement systems for exotic plantations NSW Forestry Commission.
In: Mensuration for Management Planning of Exotic Forest Plantations (complier D.A. Elliott), pp. 77-87,
Proceedings of Symposium No. 20, New Zealand Forest Research Institute.

Payne, RW., Arnold, GM. and Morgan, G.W. (eds) (1993). Genstat 5 Procedure Library Manual. Release 3[1].
Lawes Agricultural Trust (Rothamsted Experimental Station).

Pienaar, L.V. and Shiver, B.D. (1986}. Basal area prediction and projection equations for pine plantations.
Forest Science 32: 626-633.

Tasforests Vol. 9 193 December 1997




Ratkowsky, DLA. (1983). Nonlinear Regression Analysis. Dekker, New York.

Robinson, G.K. (1991). That BLUP is a good thing: the estimation of random effects. Statistical Science 6
15-51.

Schabenberger, O. and Gregoire T.G. (1996). Population-averaged and subject-specific approaches for
clustered categorical data. Journal Statistical Computation Simulation 54: 231-253.

Schall, R. (1991}). Estimation in generalized linear models with random effects. Biometrika 78: 719-727.

Searle, S.R (1965). Matrix Algebra for the Biological Sciences. John Wiley and Sons, London.

Turnbull, C.R.A., Beadle, C.L,, Bird, T. and McLeod, D.E. (1988). Volume production in intensively-
managed eucalypt plantations. Appits 41: 447-450.

Turnbull, CR.A., McLeod, D.E,, Beadle, C.L.,, Ratkowsky, D.A., Mummery, D.C. and Bird, T. (1993).
Comparative growth of Encalypius species of the subgenera Symphyomyrtus and Monocalypius.
Australinn Forestry 56: 276-286.

Vonesh, E.E and Carter, R.L. (1992). Mixed-effects nonlinear regression for unbalanced repeated measures.
Biometrics 48: 1-17,

Wedderburn, RW.M. (1974). Quasilikelihood functions, generalized linear models and the Gauss-Newton
method. Biometrika 61: 439-447.

West, PW., Ratkowsky, D.A. and Davis, AW. (1984). Problems of hypothesis testing with mutiple
measurements from individual sampling units. Forest Ecology and Management 7: 207-224.

Whyte, LN. (1992). The current eucalypt plantation resource in temperate Australia and future
development. Paper delivered to the CRC seminar Tl Role and Potentinl of Eucalypt Plantations in
Australia’s Wood Supply.

Wolfinger, R. and O'Connell, M. (1993). Generalized linear mixed models: a pseudo-likelihood approach.
Journal of Statistical Computing and Simulation 48: 233-243.

Wolfinger, R. (1993). Laplaces’s approximation for nenlinear mixed models, Biametrika 80: 791-795.

Woolions, R.C. and Hayward, W.J]. (1985). Revision of a growth and yield model for radiata pine in New
Zealand. Forest Ecology and Management 11: 191-202.

Zeger, 5.L., Liang, K.Y, and Albert, P.S. {1988). Models for longitudinal data: a generalized estimating
equation approach. Biometrics 44: 1049-1060.

Tasforests Vol. 8 194 December 1997




Appendix 1. Fitting the algorithm for the nonlinear mixed model of stand basal area

To fit Model 4 as a NLMM, the following procedure was used. The procedure involves linearisation of (4)
using a Taylor series expansion and then iteration between a generalised least squares (GLS) fit of fixed
effect parameters combined with Best Linear Unbiased Prediction (BLUP) (Robinson 1991} of the random
effects and REML estimation of the variance components (see Breslow and Clayton (1993) for the
corresponding GEMM procedure and Candy (1997) for the composite link GEMM case). The subject-
specific method is derived first from which the marginal method (Breslow and Clayton 1993) is developed.
The steps in the fitting procedure are:

Step 1. Taylor series expansion of the nonlinear model and calculation of working response and predictor
variables,

For the subject-specific model with response In(By; ), the conditional mean, p, (dropping the i subscript for
simplicity of notation), is given by

ty =E{In(By) v, g, ..., 005, by, by |

where v represents the vector of predictor variables (Bl, 1. 15,5 T, P,) ,

and its estimate at the rth iteration of the fitting algorithm is

i = E{ln(Bz) fv,al?, .., o, b0, bé”)}
or in terms of the model
() \*2 (%
3 M
i = (}M(?T] In(B;}+ (at(lr) +a{7s; +b{" ) - (WJ
T b
where
W =T+ a0 P + a1 + e BT,S +
) =T, 40P + o, + ol BT,S +50.

Since there are # parameters to be estimated for each of the random effects by and I, let the vector b be the
length 2n stacked vector of plot random effects so that b = (b1, 9 1 by ,bzfn)‘ .

Expanding yé’)about ,ul(,r -1 using a first-order Taylor series expansion gives

- o) - ) ~
=1+ 35 [ﬂ} (o~ Dy 4 z?ﬁl[——‘—’-@} (b~ bfr ) (A1)
Bas o, el ab! b, =b{T-Y

and specifying the model as
In(By) = i) +e (A2)

this model can be fitted by regressing working response variable, y, on working fixed design matrix X and
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working random design matrix Z, where

_ 5 du _ | du .
- B.)— (r—1) R {(r-1) hind:R b(r 1)
¥ {ln( 27 My }+ ZF;D[ da |, _ oy U EM b, b [

the columns of the design matrix for the ith plot, X;, are given by

[%-j] ;8=0,1..5

da (r-1)

o =a;

and similarly for Z; by

g
[ﬂ] =1, 20,
abf [N =bf" n

The size of X is N x 6 where N is the total number of plot measurements, N = ¥, m; and m; is the number
of measurements on the ith plot, and there are a total of # plots so that X is formed by 'stacking’ the
individual plot design matrices X; ; i =1,...,n. Zis the N x 2n random-effects design matrix with

Z=(Z,0Z; 0..6Z,) the direct sum (Searle 1965) of the Z;,i=1,..,n where Z; isan m1; x 2 matrix. The
working response vector, y, is size N x 1 and is formed by stacking the » individual plot vectors.

Step 2. Updating estimates of the fixed-effect and random-effect parameters. The conditional variance of y
is assumed to be

(r-1)\%2
Var(y lv,af ™0, .. ol =D, pi=0 pir=1y = 1—{2;1) }
2

so letthe (N x N} diagonal weight matrix W have diagonal element

R
nlr—l}] 2

1
W(ij, ify = ¢ 'w?2 = ¢ 1"[ -1
1))

The six fixed-effect and 2n random-effect parameters are estimated from the following mixed model
equations

X WXa' + X WZbl? = X' Wy
Z2WXa'") +(ZWZ+ Db =z Wy

where Dy is block-diagonal with elements, ¢ 1D, where D, = ding(2, 4;), involving the scaled variance
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2 2
, a o . .
components givenby A; = ?1, Ay = ?2 where ¢ = o”. The dispersion parameter, ¢, can be factored

out of the mixed model equations and estimated at convergence. The estimates of 1) and A, were
obtained from the previous iteration’s calculation of step (3) below.

The solution of the mixed model equations gives a GLS estimator to update the fixed-effect parameters as
- -1
& =(x 07X} xqQly

where
Q=ZD.Z +W™!

and BLUP of the random effects is given by

b=Dxz 0\ (y-xa").
1
Note that we cauld scale y, X and Z in the mixed model equations by mutiplying each by the weight w? so
that W then becomes the identity matrix. This scaling was carried out for the fit described in the text.

Convergence is tested by the change in the residual sum of squares, RSS,
v vm (g. _B z
RSS = 51 S0 (B - By )

The estimate of & is damped before it is used to update values of y, X, Z and w in the next iteration. The
damped estimate is given by

& = 056" +0567 Y

if the R85 decreases from interation r-1 to r, and
& =016 +0.96UY

if the RSS increases.

Step 3. The REML estimation procedure was used to estimate 4; and A, (see Candy 1997). The
dispersion parameter is calculated at convergence as follows

§= (y— X&' - Zf)(r)) W(ym X&' - zb® )( N-6-2n+ v)ul
where v corresponds to Schall’s (1991) v,

The marginal model

Fitting the marginal model requires the simple adjustment whereby the random effects estimates are
excluded from, or equivalently set to zero in, the calculation of y, X and Z in Step 1 and w in Step 2.
However, the BLUPs of the random effects b are still required to estimate Ay, A3, ¢ in Step 3 and

therefore &' in Step 2. The assumption is made (Breslow and Clayton 1993) in doing this that the
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conditional or subject-specific value of the response pt;, is well approximated by the marginal value
H= E{ln(Bz) v, o, ..., a5}. Substituting #t for p, in (Al) and excluding random effects from the

calculation of y, X and Z is equivalent to setting bt(r"l) =0;t=1,..,2n. Atconvergence, the variance of the
response based on (Al) and (A2) is approximately

Var{In(B,)} = Var(y) = ZDgZ +¢W .

(r)

5o in the marginal fitting algorithm, the previous iteration’s value of b is not needed to update /%7; only

the previous iteration’s estimates of A; and A, are required to calculate &7 and thus u ",
The alternative is to fit the 5SS model and adjust the SS fixed-effect parameter estimates to give population-

average values (Zeger et al. 1988) but this is not easy to do in the case of a NLMM. The procedure used here
was implemented in Genstat with Steps 2 and 3 using the REML directive.

Appendix 2. Adjustment for back-transformation bias in the stand basal area projection model.

The predicted value of stand basal area obtained from Muodel 4 is given on the logarithmic scale. To obtain
the prediction of stand basal area, the result from (4) must be back-transformed using the exponential
function. To correct for back-transformation bias, the following correction to Bz = exp{ ;t} was given earlier

as Equation 6:

B, = exp{O 5(01 21 + 02222 +w” )}

This result is now derived.
For repeated sampling of the theoretical population of plots with site index S and fixing the projection
period and thinning variables, if the random variable ln(Y*) = In{B; ) has a normal distribution with

e x
conditional mean for Y
71 b4

EY v, g, Oy, by, By ) = exp{uy, + }. then approximating 1y, by ,u{r) at convergence of the fitting

algorithm in Appendix 1, the marginai mean of B, can be approximated as follows:

oo P )
E(BZ)EJ‘_ Cexp[,um+{zb+w

g }] exp{—{Zoz}_lh'be]db
= exp{ 05(c?z + 0323+ wlo? )} exp{ i (’})

where

1
zisarowof Zand C= (2”)]D,1|;-

If we substitute estimated values in the above expression we get Equation 6.

Tasforests

Tasforests Vol, 9 198 December 1997




